Abstract-Recent natural disasters have revealed that emergency networks presently cannot disseminate the necessary disaster information, making it difficult to deploy and coordinate relief operations. These disasters have reinforced the knowledge that telecommunication networks constitute a critical infrastructure of our society, and the urgency in establishing protection mechanisms against disaster-based disruptions.Hence, it is important to have emergency networks able to maintain sustainable communication in disaster areas. Moreover, the network architecture should be designed so that network connectivity is maintained among nodes outside of the impacted area, while ensuring that services for costumers not in the affected area suffer minimal impact.As a first step towards achieving disaster resilience, the RE-CODIS project was formed, and its Working Group 1 members conducted a comprehensive literature survey on "strategies for communication networks to protect against large-scale natural disasters," which is summarized in this article.Index Terms-vulnerability, end-to-end resilience, natural disasters, disaster-based disruptions.
Path protection is a fast and capacity-efficient approach for increasing the availability of end-to-end connections. However, sometimes it is not possible to obtain a fully disjoint path pair. In this case, it may be admissible to consider a path pair which is as disjoint as possible, and thus provide the best (in a certain sense) level of the single-fault protection that can be ensured using this type of approach. A shared risk link group (SRLG) is a group of links which have a common risk of failure. Two new heuristics for solving the min-sum maximally node and SRLG-disjoint path pair are presented. The relative performance of the new heuristics and also of two other previously proposed heuristics is evaluated using four different networks. Results, regarding accuracy and execution time of the studied heuristics, show that one of the new proposed algorithms can be a good compromise for use in the Generalized Multi-protocol Label Switching control plane.
Abstract-Due to the increasing dependence on network services of our society, research has recently been concentrating on enhancing traditional protection strategies to withstand largescale failures, as in case of disaster events. The recently-formed EU-funded RECODIS project aims at coordinating and fostering research collaboration in Europe on disaster resiliency in communication networks. In particular, the Working Group (WG) 2 of the RECODIS project focuses on developing new networkresiliency strategies to survive weather-based disruptions. As a first step, WG2 members have conducted a comprehensive literature survey on existing studies on this topic. This paper classifies and summarizes the most relevant studies collected by WG2 members in this first phase of the project. While the majority of studies regarding weather-based disruptions deals with wireless network (as wireless channel is directly affected by weather conditions), in this survey we cover also disasterresiliency approaches designed for wired network if they leverage network reconfiguration based on disaster "alerts", considering that many weather-based disruptions grant an "alert" thanks to weather forecast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.