This research investigates the impact of controlling pandemic measures on the characteristics of atmospheric particulate matter (PM), with specific concern to its toxicity, measured by its oxidative properties. The investigated PM10 samples were collected in the metropolitan area of Milan during the epidemic lockdown, and their oxidative potential (OP) was assessed using ascorbic acid (AA) and dithiothreitol (DTT) acellular assays. During the full lockdown, we estimated reductions to 46% and 60% for nitrogen dioxide (NO2) and black carbon (BC) concentrations, respectively, based on the aggregated 2018–2019 data of NO2 and BC levels, used as baseline conditions. To quantify the impact of lockdown restrictions on PM oxidative activity, we studied the OP data measured in our laboratory on PM10 filters and directly compared the results from 15–30 April 2020 with those from the same time span in 2019. The OPAA values dropped to nearly 50%, similar to the concentration decrease in Elemental Carbon (EC) and traffic related metals, as well as to the variation in NO2 level. Otherwise, the OPDTT responses decreased to nearly 75%, as described by the corresponding reduction in Organic Carbon (OC) concentration and BC level.
Quantifying the component-specific contribution to the oxidative potential (OP) of ambient particle matter (PM) is the key information to properly representing its acute health hazards. In this study, we investigated the interactions between the major contributors to OP, i.e., transition metals and quinones, to highlight the relative effects of these species to the total OP. Several synergistic and antagonistic interactions were found that significantly change the redox properties of their binary mixtures, increasing or decreasing the values computed by a simple additive model. Such results from the standard solutions were confirmed by extending the study to atmospheric PM2.5 samples collected in winter in the Lombardia region, a hot spot for air pollution in northern Italy. This work highlights that a solid estimation of oxidative properties of ambient PM requires an interaction-based approach accounting for the interaction effects between metals and quinones.
This study describes the chemical and toxicological characteristics of fine particulate matter (PM2.5) in the Po Valley, one of the largest and most polluted areas in Europe. The investigated samples were collected in the metropolitan area of Milan during the epidemic lockdown and their toxicity was evaluated by the oxidative potential (OP), measured using ascorbic acid (OPAA) and dithiothreitol (OPDTT) acellular assays. The study was also extended to PM2.5 samples collected at different sites in the Po Valley in 2019, to represent the baseline conditions in the area. Univariate correlations were applied to the whole dataset to link the OP responses with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, OPAA was found mainly sensitive towards transition metals released from vehicular traffic, while OPDTT towards the PM carbonaceous components. The impact of the controlling lockdown restrictions on PM2.5 oxidative properties was estimated by comparing the OP values in corresponding time spans in 2020 and 2019. We found that during the full lockdown the OPAA values decreased to 80–86% with respect to the OP data in other urban sites in the area, while the OPDTT values remained nearly constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.