In this paper, we present an efficient and layout-independent Automatic License Plate Recognition (ALPR) system based on the stateof-the-art YOLO object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition results using post-processing rules. The system is conceived by evaluating and optimizing different models with various modifications, aiming at achieving the best speed/accuracy trade-off at each stage. The networks are trained using images from several datasets, with the addition of various data augmentation techniques, so that they are robust under different conditions. The proposed system achieved an average end-to-end recognition rate of 96.8% across eight public datasets (from five different regions) used in the experiments, outperforming both previous works and commercial systems in the ChineseLP, OpenALPR-EU, SSIG-SegPlate and UFPR-ALPR datasets. In the other datasets, the proposed approach achieved competitive results to those attained by the baselines. Our system also achieved impressive frames per second (FPS) rates on a high-end GPU, being able to perform in real time even when there are four vehicles in the scene. An additional contribution is that we manually labeled 38,351 bounding boxes on 6,239 images from public datasets and made the annotations publicly available to the research community.
This paper presents an efficient and layout‐independent Automatic License Plate Recognition (ALPR) system based on the state‐of‐the‐art you only look once (YOLO) object detector that contains a unified approach for license plate (LP) detection and layout classification to improve the recognition results using post‐processing rules. The system is conceived by evaluating and optimizing different models, aiming at achieving the best speed/accuracy trade‐off at each stage. The networks are trained using images from several datasets, with the addition of various data augmentation techniques, so that they are robust under different conditions. The proposed system achieved an average end‐to‐end recognition rate of 96.9% across eight public datasets (from five different regions) used in the experiments, outperforming both previous works and commercial systems in the ChineseLP, OpenALPR‐EU, SSIG‐SegPlate and UFPR‐ALPR datasets. In the other datasets, the proposed approach achieved competitive results to those attained by the baselines. The authors' system also achieved impressive frames per second (FPS) rates on a high‐end GPU, being able to perform in real time even when there are four vehicles in the scene. An additional contribution is that the authors manually labelled 38,351 bounding boxes on 6,239 images from public datasets and made the annotations publicly available to the research community.
One of the major challenges in ocular biometrics is the crossspectral scenario, i.e., how to match images acquired in different wavelengths (typically visible (VIS) against near-infrared (NIR)). This article designs and extensively evaluates cross-spectral ocular verification methods, for both the closed and open-world settings, using well known deep learning representations based on the iris and periocular regions. Using as inputs the bounding boxes of nonnormalized iris/periocular regions, we fine-tune Convolutional Neural Network (CNN) models (based either on VGG16 or ResNet-50 architectures), originally trained for face recognition. Based on the experiments carried out in two publicly available cross-spectral ocular databases, we report results for intra-spectral and cross-spectral scenarios, with the best performance being observed when fusing ResNet-50 deep representations from both the periocular and iris regions. When compared to the state-of-the-art, we observed that the proposed solution consistently reduces the Equal Error Rate (EER) values by 90% / 93% / 96% and 61% / 77% / 83% on the crossspectral scenario and in the PolyU Bi-spectral and Cross-eye-crossspectral datasets. Lastly, we evaluate the effect that the "deepness" factor of feature representations has in recognition effectiveness, and -based on a subjective analysis of the most problematic pairwise comparisons -we point out further directions for this field of research.
The use of iris as a biometric trait is widely used because of its high level of distinction and uniqueness. Nowadays, one of the major research challenges relies on the recognition of iris images obtained in visible spectrum under unconstrained environments. In this scenario, the acquired iris are affected by capture distance, rotation, blur, motion blur, low contrast and specular reflection, creating noises that disturb the iris recognition systems. Besides delineating the iris region, usually preprocessing techniques such as normalization and segmentation of noisy iris images are employed to minimize these problems. But these techniques inevitably run into some errors. In this context, we propose the use of deep representations, more specifically, architectures based on VGG and ResNet-50 networks, for dealing with the images using (and not) iris segmentation and normalization. We use transfer learning from the face domain and also propose a specific data augmentation technique for iris images. Our results show that the approach using non-normalized and only circle-delimited iris images reaches a new state of the art in the official protocol of the NICE.II competition, a subset of the UBIRIS database, one of the most challenging databases on unconstrained environments, reporting an average Equal Error Rate (EER) of 13.98% which represents an absolute reduction of about 5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.