Studies on the parasitology of ectoparasitic bat flies are scarce, and they are needed to identify patterns in parasitism. Hence, in the present study, we assessed community composition, prevalence, average infestation intensity, and specificity in the fly-bat associations in Brazilian tropical dry forests. In order to do that, we used the parasitological indices known as prevalence and average infestation intensity, along with an index of host specificity. We collected 1098 bat flies of 38 species. Five of the associations found are new to Brazil, 9 are new to southeastern Brazil, and 10 are new to science. Average infestation intensity varied from 1 to 9 and prevalence 0 to 100 %. In terms of specificity, 76 % of the bat flies were associated to a single host (monoxenic). These results highlight the low capacity of bat flies to survive on a not usual host especially due to an immunological incompatibility between parasites and hosts and dispersal barriers.
Tropical dry forests (TDFs) are highly endangered tropical ecosystems being replaced by a complex mosaic of patches of different successional stages, agricultural fields and pasturelands. In this context, it is urgent to understand how taxa playing critical ecosystem roles respond to habitat modification. Because Phyllostomid bats provide important ecosystem services (e.g. facilitate gene flow among plant populations and promote forest regeneration), in this study we aimed to identify potential patterns on their response to TDF transformation in sites representing four different successional stages (initial, early, intermediate and late) in three Neotropical regions: México, Venezuela and Brazil. We evaluated bat occurrence at the species, ensemble (abundance) and assemblage level (species richness and composition, guild composition). We also evaluated how bat occurrence was modulated by the marked seasonality of TDFs. In general, we found high seasonal and regional specificities in phyllostomid occurrence, driven by specificities at species and guild levels. For example, highest frugivore abundance occurred in the early stage of the moistest TDF, while highest nectarivore abundance occurred in the same stage of the driest TDF. The high regional specificity of phyllostomid responses could arise from: (1) the distinctive environmental conditions of each region, (2) the specific behavior and ecological requirements of the regional bat species, (3) the composition, structure and phenological patterns of plant assemblages in the different stages, and (4) the regional landscape composition and configuration. We conclude that, in tropical seasonal environments, it is imperative to perform long-term studies considering seasonal variations in environmental conditions and plant phenology, as well as the role of landscape attributes. This approach will allow us to identify potential patterns in bat responses to habitat modification, which constitute an invaluable tool for not only bat biodiversity conservation but also for the conservation of the key ecological processes they provide.
Galling arthropods represent one of the most specialized herbivore groups. On an evolutionary scale, different taxa of insects and mites have convergently adapted to a galling lifestyle. In this study, we have used a multi-taxonomic approach to analyze the interaction specialization between gall-inducing mites and insects and their host plants in the Nitra City Park (Nitra, Slovakia). We used four ecological descriptors for describe plant-galling interactions: number of host plant species used by each arthropod species, galling specificity on host plant species (specificity), exclusivity of interactions between galling and plant species (specialization) and overlap of the interactions between arthropod species (similarity). We have found 121 species of gall-inducing arthropods, totaling 90 insects and 31 mites occurring on 65 host plant species. Our results reveal that mites have high specialization and low similarity of interactions in comparison to insects. A multiple-taxonomic comparison showed that these differences are triggered by gall-wasps (Hymenoptera: Cynipidae), the taxon with the lowest levels of specificity of plant-galling interactions (i.e., occurring on different host plant species). Our findings are indicative of different patterns of interaction between distinct gall-inducing arthropods taxa and their host plants, despite the ecological convergence of different taxa to a highly specialized herbivorous habitat.
Bats play a fundamental role in ecosystem functioning since they are responsible for several ecological services such as seed dispersal and pollination. Therefore, assessing the effects of habitat structure at different scales on the bat assemblage is extremely important for supporting conservation strategies. The objective of the present study was to investigate the effects of habitat structure at multiple spatial scales on the bat assemblages and their variation along a gradient of secondary succession in a Brazilian tropical dry forest. Our results suggest that bat abundance is higher in areas close to mature forests, which shows the important role of those habitats as refuges for the regional bat fauna (in a fragmented landscape) and for the maintenance of ecosystem services provided by this group in tropical dry forests in a landscape context. In addition, bat abundance was lower in protected areas whose surroundings were better preserved (greater forest extension). This unexpected finding could result from an altered behavior in areas under a strong influence of a fruit crop matrix. Finally, we showed that the effects of the surroundings depend on the successional stage of the area under analysis. Late forests are more susceptible to variations in the forest cover in their surroundings, which show the higher fragility of these environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.