Were evaluated 113 full-sib families obtained by unbalanced diallel matings in three experiments in an augmented block design (ABD) planted side by side in the same area. The individual and joint analyses of the experiments were performed by the Reml/Blup method. The use of the ABD without replication did not prove adequate in experiments of family selection owing to the low heritability estimate at the level of family means in comparison to the joint analysis of the three experiments. The results presented predominance of the additive effects for all evaluated traits: number of stalks, tons of stalks per hectare and mean stalk weight. The components of estimated means via Blup allowed the selection of families and superior parents.
The progress of viral diseases such as the new coronavirus (COVID-19) can be influenced not only by social isolation policies, but also by climatic factors. Understanding how these factors affect the progress of the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be essential to know the risks each country is facing because of the disease. In this study, we verified the existence of a relationship between the basic reproduction number (R0) of SARS-CoV-2 with different climate variables, while also considering the Global Health Security Index (GHS). We collected data from confirmed cases of COVID-19 along with their respective GHS notes and climate data, from December 31, 2019 to April 13, 2020, for 52 countries. The generalized additive model (GAM) was applied to explore the effect of temperature, relative humidity, solar radiation index, and GHS score on the spread rate of COVID-19. The countries that showed similarity to each other were grouped into clusters using the Kohonen self-organizing map methodology to investigate the importance of each variable in the dissemination of the disease. The temperature variable presented a linear relationship (
p
< 0.001) with the R0, with an explained variation of 36.2%, while the relative humidity variable did not present a significant relationship with the R0. The response curve of the solar radiation variable presented a significant nonlinear relationship (
p
< 0.001) with an explained variation of 32.3%. The GHS index variable, with a significant nonlinear relationship (
p
< 0.001), presented the largest explanatory response in the control of COVID-19, with an explained variation of 38.4%; further, it was observed that the countries with the largest GHS index scores were less influenced by climate variables.
Path analysis allows understanding the direct and indirect effects among traits. Multicollinearity in correlation matrices may cause a bias in path analysis estimates. This study aimed to: a) understand the correlation among soybean traits and estimate their direct and indirect effects on gain oil content; b) verify the efficiency of ridge path analysis and trait culling to overcome colinearity. Three different matrices with different levels of collinearity were obtained by trait culling. Ridge path analysis was performed on matrices with strong collinearity; otherwise, a traditional path analysis was performed. The same analyses were run on a simulated dataset. Trait culling was applied to matrix R originating the matrices R 1 and R 2. Path analysis for matrices R 1 and R 2 presented a high determination coefficient (0.856 and 0.832, respectively) and low effect of the residual variable (0.379 and 0.410 respectively). Ridge path analysis presented low determination coefficient (0.657) and no direct effects greater than the effects of the residual variable (0.585). Trait culling was more effective to overcome collinearity. Mass of grains, number of nodes, and number of pods are promising for indirect selection for oil content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.