The Brazilian savanna (Cerrado) has been heavily impacted by agricultural activities over the last four to five decades, and reliable estimates of reference evapotranspiration (ETo) are needed for water resource management and irrigation agriculture. The Penman–Monteith (PM) is one of the most accepted models for ETo estimation, but it requires many inputs that are not commonly available. Therefore, assessing the FAO guidelines to compute ETo when meteorological data are missing could lead to a better understanding of which variables are critically important for reliable estimates of ETo and how climatic variables are related to water requirements and atmospheric demands. In this study, ETo was computed for a grass-dominated part of the Cerrado from April 2010 to August 2019. We tested 12 different scenarios considering radiation, relative humidity, and/or wind speed as missing climatic data using guidelines given by the FAO. Our results presented that wind speed and actual vapor pressure do not affect ETo estimates as much as the other climatic variables; therefore, in the Cerrado’s conditions, wind speed and relative humidity measurements are less required than temperature and radiation data. When radiation data were missing, the computed ETo was overestimated compared to the benchmark. FAO procedures to estimate the net radiation presented good results during the wet season; however, during the dry season, their results were overestimated because the method could not estimate negative Rn. Our results indicate that radiation data have the highest impact on ETo for our study area and presumably for regions with similar climatic conditions. In addition, those FAO procedures for estimating radiation are not suitable when radiation data are missing.
This study analyzed the performance of the Brunt (1932), Swinbank, (1963), Idso and Jackson (1969), Brutsaert (1975), Idso (1981), and Bignami et al. (1995) methods to estimate atmospheric emissivity under grass-dominated savannas (known as campo sujo Cerrado), in the region of Baixada Cuiabana. The estimates were compared with data obtained by energy balance equation in two seasons, dry season (May to August), and wet season (September to December) of 2009. The Swinbank and Idso and Jackson methods, that consider only air temperature, show better performances for the wet season. However, methods that consider water vapor pressure and air temperature (Brunt, Brutsaert, Bignami and Idso) show good performances for the dry season. The Idso and Brutsaert methods show the highest index of agreement and are recommended to estimate atmospheric emissivity for the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.