The good damping performance and inherent stability of viscoelastic materials in relatively broad frequency bands, besides cost effectiveness, offers many possibilities for practical engineering applications. However, for viscoelastic dampers subjected to dynamic loadings superimposed on static preloads, especially when good isolation characteristics are required at high frequencies, traditional design guidelines can lead to poor designs due to the rapidly increasing rate of temperature change inside the material. This paper is devoted to the numerical and experimental investigation in the degradation of the stiffness and capacity of a viscoelastic material induced by the thermal runaway phase, when it is subjected to dynamic and static loads simultaneously. After the theoretical background, the obtained results in terms of the temperature evolutions at different points within the volume of the material and the hysteresis loops for various static preloads are compared and the main features of the proposed study are highlighted.
The vortex-induced vibrations may have disastrous effects in engineering practice, affecting significantly the durability, reliability and safety of engineering structures. This is a reason for which a great deal of effort has been dedicated to the proposition of control strategies to deal with the vortex-induced vibration problem. However, few works have proposed the use of viscoelastic materials to suppress the vibrations induced by vortex shedding, which motivates the present study. Here, the immersed boundary method combined with the virtual physical model is used to investigate the dynamics of a viscoelastically-mounted rigid cylinder in a fluid flow under transverse oscillations induced by vortex shedding. A straightforward time-domain modeling procedure of immersed viscoelastic system by using a four-parameter fractional derivative model is proposed. After the theoretical aspects, numerical tests are performed to investigate the vortex-induced oscillations and flow characteristics of the immersed viscoelastic system at Reynolds number 10,000 for a range of reduced velocity and temperature for two values of mass ratios. The results demonstrate the interest in using viscoelastic materials to mitigate the vortex-induced vibrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.