The good damping performance and inherent stability of viscoelastic materials in relatively broad frequency bands, besides cost effectiveness, offers many possibilities for practical engineering applications. However, for viscoelastic dampers subjected to dynamic loadings superimposed on static preloads, especially when good isolation characteristics are required at high frequencies, traditional design guidelines can lead to poor designs due to the rapidly increasing rate of temperature change inside the material. This paper is devoted to the numerical and experimental investigation in the degradation of the stiffness and capacity of a viscoelastic material induced by the thermal runaway phase, when it is subjected to dynamic and static loads simultaneously. After the theoretical background, the obtained results in terms of the temperature evolutions at different points within the volume of the material and the hysteresis loops for various static preloads are compared and the main features of the proposed study are highlighted.
Abstract. Dynamic vibration absorbers are discrete devices developed in the beginning of the last century used to attenuate the vibrations of different engineering structures. They have been used in several engineering applications, such as ships, power lines, aeronautic structures, civil engineering constructions subjected to seismic induced excitations, compressor systems, etc. However, in the context of nonlinear dynamics, few works have been proposed regarding the robust optimal design of nonlinear dynamic vibration absorbers. In this paper, a robust optimization strategy combined with sensitivity analysis of systems incorporating nonlinear dynamic vibration absorbers is proposed. Although sensitivity analysis is a well known numerical technique, the main contribution intended for this study is its extension to nonlinear systems. Due to the numerical procedure used to solve the nonlinear equations, the sensitivities addressed herein are computed from the first-order finite-difference approximations. With the aim of increasing the efficiency of the nonlinear dynamic absorber into a frequency band of interest, and to augment the robustness of the optimal design, a robust optimization strategy combined with the previous sensitivities is addressed. After presenting the underlying theoretical foundations, the proposed robust design methodology is performed for a two degree-of-freedom system incorporating a nonlinear dynamic vibration absorber. Based on the obtained results, the usefulness of the proposed methodology is highlighted.
The present work focuses on the optimal design of nonlinear mechanical systems by using heuristic optimization methods. In this context, the nonlinear optimization problem is devoted to a two-degree-of-freedom nonlinear damped system, constituted of a primary mass attached to the ground by a linear spring and a secondary mass attached to the primary system by a nonlinear spring. This arrangement forms a nonlinear dynamic vibration absorber (nDVA), which is used in this contribution as a representative example of a nonlinear mechanical system. The sensitivity analysis of the suppression bandwidth, namely, the frequency range over which the ratio of the main mass displacement amplitude to the amplitude of the forcing function is less than unity, with respect to the design variables that characterize the nonlinear system based on the first order finite differences is presented. For illustration purposes the optimization problem is written as to maximize the suppression bandwidth by using three recent bioinspired optimization methods: Bees Colony Algorithm, Firefly Colony Algorithm, and Fish Swarm Algorithm. The results are compared with other evolutionary strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.