Bolomys lasiurus and Oligoryzomys nigripes are rodent reservoirs of Araraquara-like and Juquitiba-like hantaviruses, which cause HPS in Brazil.
Although hantavirus pulmonary syndrome (HPS) was discovered in North America in 1993, more recent investigations have shown that the disease is a much larger problem in South America, where a greater number of cases and HPS-associated viruses have now been detected. Here we describe the genetic investigation of three fatal HPS cases from Brazil, including a 1995 case in Castelo dos Sonhos (CAS) in the state of Mato Grosso and two 1996 cases in the counties of Araraquara (ARA) and Franca (FRA), in the state of São Paulo. Reverse transcription-polymerase chain reaction (RT-PCR) products representing fragments of the hantavirus N, G1, and G2 coding regions were amplified from patient acute-phase serum samples, and the nucleotide (nt) sequences (394, 259, and 139 nt, respectively) revealed high deduced amino acid sequence identity between ARA and FRA viruses (99.2%, 96.5%, and 100%, respectively). However, amino acid differences of up to 14.0% were observed when ARA and FRA virus sequences were compared with those of the geographically more distant CAS virus. Analysis of a 643-nt N coding region and a 1734-nt predominantly G2-encoding region of ARA and CAS virus genomes confirmed that these Brazilian viruses were distinct and monophyletic with previously characterized Argentinean hantaviruses, and suggested that Laguna Negra (LN) virus from Paraguay was ancestral to both the Brazilian and Argentinean viruses. The phylogenetic tree based on the N coding fragment also placed LN in a separate clade with Rio Mamore virus from Bolivia. At the amino acid level, ARA and CAS viruses appeared more closely related to the Argentinean viruses than they were to each other. Similarly, analysis of the diagnostic 139-nt G2 fragment showed that the Juquitiba virus detected in a 1993 fatal HPS case close to São Paulo city, Brazil was closer to Argentinean viruses than to ARA or CAS viruses. These data indicate that at least three different hantavirus genetic lineages are associated with Brazilian HPS cases.
The yellow fever (YF) 17D virus is one of the most successful vaccines developed to data. Its use has been estimated to be over 400 million doses with an excellent record of safety. In the past 3 years, yellow fever vaccination was intensified in Brazil in response to higher risk of urban outbreaks of the disease. Two fatal adverse events temporally associated with YF vaccination were reported. Both cases had features similar to yellow fever disease, including hepatitis and multiorgan failure. Two different lots of YF 17DD virus vaccine were administered to the affected patients and also to hundreds of thousands of other individuals without any other reported serious adverse events. The lots were prepared from the secondary seed, which has been in continuous use since 1984. Nucleotide sequencing revealed minor variations at some nucleotide positions between the secondary seed lot virus and the virus isolates from patients; these differences were not consistent across the isolates, represented differences in the relative amount of each nucleotide in a heterogeneous position, and did not result in amino acid substitutions. Inoculation of rhesus monkeys with the viruses isolated from the two patients by the intracerebral (ic) or intrahepatic (ih) route caused minimal viremia and no clinical signs of infection or alterations in laboratory markers. Central nervous system histological scores of rhesus monkeys inoculated ic were within the expected range, and there were no histopathological lesions in animals inoculated ih. Altogether, these results demonstrated the genetic stability and attenuated phenotype of the viruses that caused fatal illness in the two patients. Therefore, the fatal adverse events experienced by the vaccinees are related to individual, genetically determined host factors that regulate cellular susceptibility to yellow fever virus. Such increased susceptibility, resulting in clinically overt disease expression, appears to be extremely rare.
Dengue Fever and Dengue Hemorrhagic Fever are diseases affecting approximately 100 million people/year and are a major concern in developing countries. In the present study, the phylogenetic relationship of six strains of the first autochthonous cases of DENV-4 infection occurred in Sao Paulo State, Parana State and Rio Grande do Sul State, Brazil, 2011 were studied. Nucleotide sequences of the envelope gene were determined and compared with sequences representative of the genotypes I, II, III and Sylvatic for DEN4 retrieved from GenBank. We employed a Bayesian phylogenetic approach to reconstruct the phylogenetic relationships of Brazilian DENV-4 and we estimated evolutionary rates and dates of divergence for DENV-4 found in Brazil in 2011. All samples sequenced in this study were located in Genotype II. The studied strains are monophyletic and our data suggest that they have been evolving separately for at least 4 to 6 years. Our data suggest that the virus might have been present in the region for some time, without being noticed by Health Surveillance Services due to a low level of circulation and a higher prevalence of DENV-1 and DENV- 2.
A new arenavirus,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.