As the rate of obesity and the incidence of diabetes mellitus have been increasing, diabetic neuropathy has become the most common cause of peripheral neuropathy in developed countries. In addition, a variety of pathogenetically heterogeneous disorders can lead to impairment of the peripheral nervous system including amyloidosis, vitamin deficiencies, uremia and lipid disorders, alcohol abuse, autoimmune and infectious diseases as well as exposure to environmental toxins. We have noted that a combination of these disorders may aggravate the manifestations of peripheral diabetic neuropathy, an effect, which is most pronounced when metabolic and non-metabolic pathologies lead to cumulative damage. Current treatment options are limited and generally have unsatisfactory results in most patients. Therapeutic apheresis (INUSpherese®) allows the removal of metabolic, inflammatory, immunologic and environmental contributors to the disease process and may be an effective treatment option. We reviewed the developments in therapeutic apheresis for metabolic and non-metabolic peripheral neuropathy, including the current literature as well as data from our university diabetes center.
Improvements to massively parallel sequencing have allowed the routine recovery of natural and induced sequence variants. A broad range of biological disciplines have benefited from this, ranging from plant breeding to cancer research. The need for high sequence coverage to accurately recover single nucleotide variants and small insertions and deletions limits the applicability of whole genome approaches. This is especially true in organisms with a large genome size or for applications requiring the screening of thousands of individuals, such as the reverse-genetic technique known as TILLING. Using PCR to target and sequence chosen genomic regions provides an attractive alternative as the vast reduction in interrogated bases means that sample size can be dramatically increased through amplicon multiplexing and multi-dimensional sample pooling while maintaining suitable coverage for recovery of small mutations. Direct sequencing of PCR products is limited, however, due to limitations in read lengths of many next generation sequencers. In the present study we show the optimization and use of ultrasonication for the simultaneous fragmentation of multiplexed PCR amplicons for TILLING highly pooled samples. Sequencing performance was evaluated in a total of 32 pooled PCR products produced from 4096 chemically mutagenized Hordeum vulgare DNAs pooled in three dimensions. Evaluation of read coverage and base quality across amplicons suggests this approach is suitable for high-throughput TILLING and other applications employing highly pooled complex sampling schemes. Induced mutations previously identified in a traditional TILLING screen were recovered in this dataset further supporting the efficacy of the approach.
Physical mutagens are a powerful tool used for genetic research and breeding for over eight decades. Yet, when compared to chemical mutagens, data sets on the effect of different mutagens and dosages on the spectrum and density of induced mutations remain lacking. To address this, we investigated the landscape of mutations induced by gamma and X-ray radiation in the most widely cultivated crop species: rice. A mutant population of a tropical upland rice, Oryza sativa L., was generated and propagated via self-fertilization for seven generations. Five dosages ranging from 75 Gy to 600 Gy in both X-ray and gamma-irradiated material were applied. In the process of a forward genetic screens, 11 unique rice mutant lines showing phenotypic variation were selected for mutation analysis via whole-genome sequencing. Thousands of candidate mutations were recovered in each mutant with single base substitutions being the most common, followed by small indels and structural variants. Higher dosages resulted in a higher accumulation of mutations in gamma-irradiated material, but not in X-ray-treated plants. The in vivo role of all annotated rice genes is yet to be directly investigated. The ability to induce a high density of single nucleotide and structural variants through mutagenesis will likely remain an important approach for functional genomics and breeding.
Improvements to massively parallel sequencing have allowed the routine recovery of natural and induced sequence variants. A broad range of biological disciplines have benefited from this, ranging from plant breeding to cancer research. The need for high sequence coverage to accurately recover single nucleotide variants and small insertions and deletions limits the applicability of whole genome approaches. This is especially true in organisms with a large genome size or for applications requiring the screening of thousands of individuals, such as the reverse-genetic technique known as TILLING, where whole genome approaches become cost prohibitive. Using PCR to target and sequence chosen genomic regions provides an attractive alternative as the vast reduction in interrogated bases means that sample size can be dramatically increased through amplicon multiplexing and multidimensional sample pooling while maintaining suitable coverage for recovery of small mutations. Direct sequencing of PCR products is limited, however, due to limitations in read lengths of many next generation sequencers. In the present study we show the optimization and use of ultrasonication for the simultaneous fragmentation of multiplexed PCR amplicons for TILLING highly pooled samples. Thirty-two PCR products were produced from genomic DNA pools representing 265 pooled barley mutant lines. Mutant lines were produced with the chemical mutagen ethyl methanesulfonate. Samples were subjected to 2x300PE illumina sequencing. Evaluation of read coverage and base quality across amplicons suggests this approach is suitable for high-throughput TILLING and other applications employing highly pooled complex sampling schemes. Induced mutations previously identified in a traditional TILLING screen were recovered in this dataset further supporting the efficacy of the approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.