We demonstrate ease.ml/snoopy, a data analytics system that performs feasibility analysis for machine learning (ML) applications before they are developed. Given a performance target of an ML application (e.g., accuracy above 0.95), ease.ml/snoopy provides a decisive answer to ML developers regarding whether the target is achievable or not. We formulate the feasibility analysis problem as an instance of Bayes error estimation. That is, for a data (distribution) on which the ML application should be performed, ease.ml/snoopy provides an estimate of the Bayes error - the minimum error rate that can be achieved by any classifier. It is well-known that estimating the Bayes error is a notoriously hard task. In ease.ml/snoopy we explore and employ estimators based on the combination of (1) nearest neighbor (NN) classifiers and (2) pre-trained feature transformations. To the best of our knowledge, this is the first work on Bayes error estimation that combines (1) and (2). In today's cost-driven business world, feasibility of an ML project is an ideal piece of information for ML application developers - ease.ml/snoopy plays the role of a reliable " consultant. "
Transfer learning can be seen as a data- and compute-efficient alternative to training models from scratch. The emergence of rich model repositories, such as TensorFlow Hub, enables practitioners and researchers to unleash the potential of these models across a wide range of downstream tasks. As these repositories keep growing exponentially, efficiently selecting a good model for the task at hand becomes paramount. However, a single generic search strategy (e.g., taking the model with the highest linear classifier accuracy) does not lead to optimal model selection for diverse downstream tasks. In fact, using hybrid or mixed strategies can often be beneficial. Therefore, we propose SHiFT, the first downstream task-aware, flexible, and efficient model search engine for transfer learning. Users interface with SHiFT using the SHiFT-QL query language, which gives users the flexibility to customize their search criteria. We optimize SHiFT-QL queries using a cost-based decision maker and evaluate them on a wide rang of tasks. Motivated by the iterative nature of machine learning development, we further support efficient incremental executions of our queries, which requires a special implementation when jointly used with our optimizations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.