We demonstrate ease.ml/snoopy, a data analytics system that performs
feasibility analysis
for machine learning (ML) applications
before
they are developed. Given a performance target of an ML application (e.g., accuracy above 0.95), ease.ml/snoopy provides a decisive answer to ML developers regarding whether the target is achievable or not. We formulate the feasibility analysis problem as an instance of Bayes error estimation. That is, for a data (distribution) on which the ML application should be performed, ease.ml/snoopy provides an estimate of the Bayes error - the
minimum error rate
that can be achieved by
any
classifier. It is well-known that estimating the Bayes error is a notoriously hard task. In ease.ml/snoopy we explore and employ estimators based on the combination of (1) nearest neighbor (NN) classifiers and (2) pre-trained feature transformations. To the best of our knowledge, this is the first work on Bayes error estimation that combines (1) and (2). In today's cost-driven business world, feasibility of an ML project is an ideal piece of information for ML application developers - ease.ml/snoopy plays the role of a reliable "
consultant.
"
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.