Efforts to contain the spread of SARS-CoV-2 have spurred the need for reliable, rapid, and cost-effective diagnostic methods which can be applied to large numbers of people. However, current standard protocols for the detection of viral nucleic acids while sensitive, require a high level of automation and sophisticated laboratory equipment to achieve throughputs that allow whole communities to be tested on a regular basis. Here we present Cap-iLAMP (capture and improved loop-mediated isothermal amplification) which combines a hybridization capture-based RNA extraction of gargle lavage samples with an improved colorimetric RT-LAMP assay and smartphone-based color scoring. Cap-iLAMP is compatible with point-of-care testing and enables the detection of SARS-CoV-2 positive samples in less than one hour. In contrast to direct addition of the sample to improved LAMP (iLAMP), Cap-iLAMP prevents false positives and allows single positive samples to be detected in pools of 25 negative samples, reducing the reagent cost per test to ~1 Euro per individual.
The Forbes’ Quarry and Devil’s Tower partial crania from Gibraltar are among the first Neanderthal remains ever found. Here, we show that small amounts of ancient DNA are preserved in the petrous bones of the 2 individuals despite unfavorable climatic conditions. However, the endogenous Neanderthal DNA is present among an overwhelming excess of recent human DNA. Using improved DNA library construction methods that enrich for DNA fragments carrying deaminated cytosine residues, we were able to sequence 70 and 0.4 megabase pairs (Mbp) nuclear DNA of the Forbes’ Quarry and Devil’s Tower specimens, respectively, as well as large parts of the mitochondrial genome of the Forbes’ Quarry individual. We confirm that the Forbes’ Quarry individual was a female and the Devil’s Tower individual a male. We also show that the Forbes’ Quarry individual is genetically more similar to the ∼120,000-y-old Neanderthals from Scladina Cave in Belgium (Scladina I-4A) and Hohlenstein-Stadel Cave in Germany, as well as to a ∼60,000- to 70,000-y-old Neanderthal from Russia (Mezmaiskaya 1), than to a ∼49,000-y-old Neanderthal from El Sidrón (El Sidrón 1253) in northern Spain and other younger Neanderthals from Europe and western Asia. This suggests that the Forbes’ Quarry fossil predates the latter Neanderthals. The preservation of archaic human DNA in the warm coastal climate of Gibraltar, close to the shores of Africa, raises hopes for the future recovery of archaic human DNA from regions in which climatic conditions are less than optimal for DNA preservation.
Background Venoms and the toxins they contain represent molecular adaptations that have evolved on numerous occasions throughout the animal kingdom. However, the processes that shape venom protein evolution are poorly understood because of the scarcity of whole-genome data available for comparative analyses of venomous species. Results We performed a broad comparative toxicogenomic analysis to gain insight into the genomic mechanisms of venom evolution in robber flies (Asilidae). We first sequenced a high-quality draft genome of the hymenopteran hunting robber fly Dasypogon diadema, analysed its venom by a combined proteotranscriptomic approach, and compared our results with recently described robber fly venoms to assess the general composition and major components of asilid venom. We then applied a comparative genomics approach, based on 1 additional asilid genome, 10 high-quality dipteran genomes, and 2 lepidopteran outgroup genomes, to reveal the evolutionary mechanisms and origins of identified venom proteins in robber flies. Conclusions While homologues were identified for 15 of 30 predominant venom protein in the non-asilid genomes, the remaining 15 highly expressed venom proteins appear to be unique to robber flies. Our results reveal that the venom of D. diadema likely evolves in a multimodal fashion comprising (i) neofunctionalization after gene duplication, (ii) expression-dependent co-option of proteins, and (iii) asilid lineage-specific orphan genes with enigmatic origin. The role of such orphan genes is currently being disputed in evolutionary genomics but has not been discussed in the context of toxin evolution. Our results display an unexpected dynamic venom evolution in asilid insects, which contrasts the findings of the only other insect toxicogenomic evolutionary analysis, in parasitoid wasps (Hymenoptera), where toxin evolution is dominated by single gene co-option. These findings underpin the significance of further genomic studies to cover more neglected lineages of venomous taxa and to understand the importance of orphan genes as possible drivers for venom evolution.
SARS-CoV-2 causes substantial morbidity and mortality in elderly and immunocompromised individuals, particularly in retirement homes, where transmission from asymptomatic staff and visitors may introduce the infection. Here we present a cheap and fast approach to detect SARS-CoV-2 in single or pooled gargle lavages ('mouthwashes'). With this approach, we test all staff at a nursing home daily over a period of three weeks in order to reduce the risk that the infection penetrates the facility. This or similar approaches could be implemented to protect hospitals, nursing homes and other institutions in this and future viral epidemics.
SARS-CoV-2 causes substantial morbidity and mortality in elderly and immunocompromised individuals, particularly in retirement homes, where transmission from asymptomatic staff and visitors may introduce the infection. Here we present a cheap and fast screening method based on direct RT-qPCR to detect SARS-CoV-2 in single or pooled gargle lavages (“mouthwashes”). This method detects individuals with large viral loads (Ct≤29) and we use it to test all staff at a nursing home daily over a period of three weeks in order to reduce the risk that the infection penetrates the facility. This or similar approaches can be implemented to protect hospitals, nursing homes and other institutions in this and future viral epidemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.