Modern humans arrived in Europe ~45,000 years ago, but little is known about their genetic composition before the start of farming ~8,500 years ago. We analyze genome-wide data from 51 Eurasians from ~45,000-7,000 years ago. Over this time, the proportion of Neanderthal DNA decreased from 3–6% to around 2%, consistent with natural selection against Neanderthal variants in modern humans. Whereas the earliest modern humans in Europe did not contribute substantially to present-day Europeans, all individuals between ~37,000 and ~14,000 years ago descended from a single founder population which forms part of the ancestry of present-day Europeans. A ~35,000 year old individual from northwest Europe represents an early branch of this founder population which was then displaced across a broad region, before reappearing in southwest Europe during the Ice Age ~19,000 years ago. During the major warming period after ~14,000 years ago, a new genetic component related to present-day Near Easterners appears in Europe. These results document how population turnover and migration have been recurring themes of European pre-history.
To date the only Neandertal genome that has been sequenced to high quality is from an individual found in Southern Siberia. We sequenced the genome of a female Neandertal from ~50 thousand years ago from Vindija Cave, Croatia to ~30-fold genomic coverage. She carried 1.6 differences per ten thousand base pairs between the two copies of her genome, fewer than present-day humans, suggesting that Neandertal populations were of small size. Our analyses indicate that she was more closely related to the Neandertals that mixed with the ancestors of present-day humans living outside of sub-Saharan Africa than the previously sequenced Neandertal from Siberia, allowing 10-20% more Neandertal DNA to be identified in present-day humans, including variants involved in LDL cholesterol levels, schizophrenia and other diseases.
By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization’s decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.
Neanderthals are thought to have disappeared in Europe ~39,000–41,000 years ago but they have contributed one to three percent of the DNA of present-day people in Eurasia1. Here, we analyze DNA from a 37,000–42,000-year-old2 modern human from Peştera cu Oase, Romania. Although the specimen contains small amounts of human DNA, we use an enrichment strategy to isolate sites that are informative about its relationship to Neanderthals and present-day humans. We find that on the order of six to nine percent of the genome of the Oase individual is derived from Neanderthals, more than any other modern human sequenced to date. Three chromosomal segments of Neanderthal ancestry are over 50 centimorgans in size, indicating that this individual had a Neanderthal ancestor as recently as four to six generations back. However, the Oase individual does not share more alleles with later Europeans than with East Asians, suggesting that the Oase population did not contribute substantially to later humans in Europe.
Summary We assembled genome-wide data from 16 prehistoric Africans. We show that the anciently divergent lineage that comprises the primary ancestry of the southern African San had a wider distribution in the past, contributing ~2/3 of the ancestry of Malawi hunter-gatherers ~8100–2500 years ago, and ~1/3 of Tanzanian hunter-gatherers ~1400 years ago. We document how the spread of farmers from western Africa involved complete replacement of local hunter-gatherers in some regions, and we track the spread of herders by showing that the population of a ~3100 year-old pastoralist from Tanzania contributed ancestry to people from northeast to southern Africa, including a ~1200-year-old southern African pastoralist. The deepest diversifications of African lineages were complex, involving long-distance gene flow, or a lineage more deeply diverging than that of the San contributing more to some western Africans than others. We finally leverage ancient genomes to document episodes of natural selection in southern African populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.