Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus ‘metabolic reconstruction’, which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/.
BackgroundQuantitative models of biochemical and cellular systems are used to answer a variety of questions in the biological sciences. The number of published quantitative models is growing steadily thanks to increasing interest in the use of models as well as the development of improved software systems and the availability of better, cheaper computer hardware. To maximise the benefits of this growing body of models, the field needs centralised model repositories that will encourage, facilitate and promote model dissemination and reuse. Ideally, the models stored in these repositories should be extensively tested and encoded in community-supported and standardised formats. In addition, the models and their components should be cross-referenced with other resources in order to allow their unambiguous identification.DescriptionBioModels Database http://www.ebi.ac.uk/biomodels/ is aimed at addressing exactly these needs. It is a freely-accessible online resource for storing, viewing, retrieving, and analysing published, peer-reviewed quantitative models of biochemical and cellular systems. The structure and behaviour of each simulation model distributed by BioModels Database are thoroughly checked; in addition, model elements are annotated with terms from controlled vocabularies as well as linked to relevant data resources. Models can be examined online or downloaded in various formats. Reaction network diagrams generated from the models are also available in several formats. BioModels Database also provides features such as online simulation and the extraction of components from large scale models into smaller submodels. Finally, the system provides a range of web services that external software systems can use to access up-to-date data from the database.ConclusionsBioModels Database has become a recognised reference resource for systems biology. It is being used by the community in a variety of ways; for example, it is used to benchmark different simulation systems, and to study the clustering of models based upon their annotations. Model deposition to the database today is advised by several publishers of scientific journals. The models in BioModels Database are freely distributed and reusable; the underlying software infrastructure is also available from SourceForge https://sourceforge.net/projects/biomodels/ under the GNU General Public License.
Superspreading events shaped the Coronavirus Disease 2019 (COVID-19) pandemic, and their rapid identification and containment are essential for disease control. Here we provide a national-scale analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) superspreading during the first wave of infections in Austria, a country that played a major role in initial virus transmissions in Europe. Capitalizing on Austria’s well-developed epidemiological surveillance system, we identified major SARS-CoV-2 clusters during the first wave of infections and performed deep whole-genome sequencing of more than 500 virus samples. Phylogenetic-epidemiological analysis enabled the reconstruction of superspreading events and charts a map of tourism-related viral spread originating from Austria in spring 2020. Moreover, we exploited epidemiologically well-defined clusters to quantify SARS-CoV-2 mutational dynamics, including the observation of a low-frequency mutation that progressed to fixation within the infection chain. Time-resolved virus sequencing unveiled viral mutation dynamics within individuals with COVID-19, and epidemiologically validated infector-infectee pairs enabled us to determine an average transmission bottleneck size of 103 SARS-CoV-2 particles. In conclusion, this study illustrates the power of combining epidemiological analysis with deep viral genome sequencing to unravel the spread of SARS-CoV-2, and to gain fundamental insights into mutational dynamics and transmission properties.
Many cell-cycle-specific events are supported by stage-specific gene expression. In budding yeast, at least three different nuclear factors seem to cooperate in the periodic activation of G2/M-specific genes. Here we show, by using chromatin immunoprecipitation polymerase chain reaction assays, that a positive regulator, Ndd1, becomes associated with G2/M promoter regions in manner that depends on the stage in cell cycle. Its recruitment depends on a permanent protein-DNA complex consisting of the MADS box protein, Mcm1, and a recently identified partner Fkh2, a forkhead/winged helix related transcription factor. The lethality of Ndd1 depletion is suppressed by fkh2 null mutations, which indicates that Fkh2 may also have a negative regulatory role in the transcription of G2/M-induced RNAs. We conclude that Ndd1-Fkh2 interactions may be the transcriptionally important process targeted by Cdk activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.