Purpose: Endometrioid ovarian carcinoma (ENOC) is generally associated with a more favorable prognosis compared with other ovarian carcinomas. Nonetheless, current patient treatment continues to follow a “one-size-fits-all” approach. Even though tumor staging offers stratification, personalized treatments remain elusive. As ENOC shares many clinical and molecular features with its endometrial counterpart, we sought to investigate The Cancer Genome Atlas–inspired endometrial carcinoma (EC) molecular subtyping in a cohort of ENOC. Experimental Design: IHC and mutation biomarkers were used to segregate 511 ENOC tumors into four EC-inspired molecular subtypes: low-risk POLE mutant (POLEmut), moderate-risk mismatch repair deficient (MMRd), high-risk p53 abnormal (p53abn), and moderate-risk with no specific molecular profile (NSMP). Survival analysis with established clinicopathologic and subtype-specific features was performed. Results: A total of 3.5% of cases were POLEmut, 13.7% MMRd, 9.6% p53abn, and 73.2% NSMP, each showing distinct outcomes (P < 0.001) and survival similar to observations in EC. Median OS was 18.1 years in NSMP, 12.3 years in MMRd, 4.7 years in p53abn, and not reached for POLEmut cases. Subtypes were independent of stage, grade, and residual disease in multivariate analysis. Conclusions: EC-inspired molecular classification provides independent prognostic information in ENOC. Our findings support investigating molecular subtype–specific management recommendations for patients with ENOC; for example, subtypes may provide guidance when fertility-sparing treatment is desired. Similarities between ENOC and EC suggest that patients with ENOC may benefit from management strategies applied to EC and the opportunity to study those in umbrella trials.
Cold atmospheric plasma (CAP) treatment is developing as a promising option for local anti-neoplastic treatment of dysplastic lesions and early intraepithelial cancer. Currently, high-frequency electrosurgical argon plasma sources are available and well established for clinical use. In this study, we investigated the effects of treatment with a non-thermally operated electrosurgical argon plasma source, a Martin Argon Plasma Beamer System (MABS), on cell proliferation and metabolism of a tissue panel of human cervical cancer cell lines as well as on non-cancerous primary cells of the cervix uteri. Similar to conventional CAP sources, we were able to show that MABS was capable of causing antiproliferative and cytotoxic effects on cervical squamous cell and adenocarcinoma as well as on non-neoplastic cervical tissue cells due to the generation of reactive species. Notably, neoplastic cells were more sensitive to the MABS treatment, suggesting a promising new and non-invasive application for in vivo treatment of precancerous and cancerous cervical lesions with non-thermally operated electrosurgical argon plasma sources.
In this study, we aimed to test whether prognostic biomarkers can achieve a clinically relevant stratification of patients with stage I ovarian clear cell carcinoma (OCCC) and to survey the expression of 10 selected actionable targets (theranostic biomarkers) in stage II to IV cases. From the population-based Alberta Ovarian Tumor Type study, 160 samples of OCCC were evaluated by immunohistochemistry and/or silver-enhanced in situ hybridization for the status of 5 prognostic (p53, p16, IGF2BP3, CCNE1, FOLR1) and 10 theranostic biomarkers (ALK, BRAF V600E, ERBB2, ER, MET, MMR, PR, ROS1, NTRK1-3, VEGFR2). Kaplan-Meier survival analyses were performed. Cases with abnormal p53 or combined p16/IFG2BP3 abnormal expression identified a small subset of patients (6/54 cases) with stage I OCCC with an aggressive course (5-yr ovarian cancer-specific survival of 33.3%, compared with 91.5% in the other stage I cases). Among theranostic targets, ERBB2 amplification was present in 11/158 (7%) of OCCC, while MET was ubiquitously expressed in OCCC similar to a variety of normal control tissues. ER/PR showed a low prevalence of expression. No abnormal expression was detected for any of the other targets. We propose a combination of 3 biomarkers (p53, p16, IGF2BP3) to predict prognosis and the potential need for adjuvant therapy for patients with stage I OCCC. This finding requires replication in larger cohorts. In addition, OCCC could be tested for ERBB2 amplification for inclusion in gynecological basket trials targeting this alteration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.