A process was developed for the recovery of rare earths from terbium-rich lamp phosphor waste. The process consists of a solvometallurgical leaching step with concentrated methanesulphonic acid (MSA) at temperatures between 433 K to 473 K, followed by solvent extraction with the acidic extractant di-(2-ethylhexyl)phosphoric acid (D2EHPA). Preliminary tests were performed on a synthetic lamp phosphor (LaPO 4 :Ce 3+ ,Tb 3+ , LAP). The optimised conditions were afterwards applied to a real lamp phosphor waste residue, that was obtained after removal of yttrium and europium from lamp phosphor waste powder by a hydrometallurgical process. The leaching can be carried out at lower temperatures than digestion in concentrated sulphuric acid or fused alkali. The process takes advantage of the much higher solubility of the rare-earth methanesulphonates compared to the corresponding sulphates, so that solvent extraction can be performed directly on the leachate after dilution, without the need of several additional steps to convert the rare-earth sulphates into chlorides or nitrates.
The copper silicate ore chrysocolla forms a large potential copper resource, which has not yet been fully exploited, due to difficulties associated with its beneficiation by flotation and metallurgical processing. Direct acid leaching of chrysocolla causes silica gel formation. Therefore, in this work, the feasibility of solvometallurgical methods to leach copper from high-grade chrysocolla while avoiding issues with silica gel formation was assessed. Ammoniacal solvoleaching was performed with a solvent comprising the chelating extractant LIX 984 N or the acidic extractant Versatic acid 10 in an aliphatic diluent (ShellSol D70 or GTL Fluid G70), combined with a small volume of aqueous ammonia. In the three-phase system, aqueous ammonia dissolves copper from milled and sieved chrysocolla, while copper is simultaneously extracted to the organic phase, releasing ammonia that can be reused for further extraction. The best results were obtained with LIX 984 N as extractant: using a 50 vol% LIX 984 N solution, about 75% of copper could be extracted after 60 min of leaching at 25 °C. The stripping of copper from the pregnant leach solution was optimized. Quantitative stripping of copper was achieved with 1.89 M sulfuric acid and the final aqueous solution of copper sulfate had a concentration of 33 g L−1. Experiments in a leaching reactor (1 L) and small battery of mixer-settlers (3 stages, 35 and 143 mL effective volume in the mixer and the settler, respectively, per stage) were successfully conducted and allowed to recover copper with a purity of 99.9%. A conceptual flow sheet has been developed. Graphical Abstract
The zinc content of basic oxygen furnace (BOF) sludges is too high for direct recycling into the blast furnace via the sinter plant, as excessive zinc concentrations are detrimental for the refractory lining of the blast furnace. However, by partial and selective removal of zinc from the BOF sludge, the residual sludge can be used as a secondary iron resource in the blast furnace. In this paper, BOF sludge was leached with aqueous ammonia, aqueous solutions of ammonium salts (chloride, carbonate, and sulfate), and aqueous mixtures of ammonia and ammonium salt. The mixtures of ammonia and ammonium salt could leach more zinc with respect to either the aqueous ammonia or the aqueous ammonium salt solution. The ammonia–ammonium carbonate (AAC) mixture was selected as the most suitable lixiviant due to the high zinc leaching efficiency in combination with a high selectivity towards iron; furthermore, this combination does not introduce unwanted chloride or sulfate impurities in the residue. The leaching process was optimized in terms of the liquid-to-solid ratio, total ammonia concentration, ammonium:ammonia molar ratio, temperature, and leaching time. The co-dissolved iron was precipitated as a hydroxide after oxidation of ferrous to ferric ions by an air stream, without co-precipitation of zinc, while the dissolved zinc could be easily recovered as zinc sulfide by precipitation with ammonium sulfide. The (almost) closed-loop process was successfully up-scaled from 10 mL to 1 L scale. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.