Spin-crossover (SCO) materials have for more than 30 years stood out for their vast application potential in memory, sensing and display devices. To reach magnetic multistability conditions, the high-spin (HS) and low-spin (LS) states have to be carefully balanced by ligand field stabilization and spin-pairing energies. Both effects could be effectively modelled by electronic structure theory, if the description would be accurate enough to describe these concurrent influences to within a few kJ/mol. Such a milestone would allow for the in silico-driven development of SCO complexes. However, so far, the ab initio simulation of such systems has been dominated by general gradient approximation density functional calculations. The latter can only provide the right answer for the wrong reasons, given that the LS states are grossly over-stabilized. In this contribution, we explore different venues for the parameterization of hybrid functionals. A fitting set is provided on the basis of explicitly correlated coupled cluster calculations, with single- and multi-dimensional fitting approaches being tested to selected classes of hybrid functionals (hybrid, range-separated, and local hybrid). Promising agreement to benchmark data is found for a rescaled PBE0 hybrid functional and a local version thereof, with a discussion of different atomic exchange factors.
The 20S Proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells as well as in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome, an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy and boronic acid containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics and Bayesian optimization of non-bonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach to the reevaluation of non-bonded potentials making use of QM/MM dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the inhibitor. File list (2)download file view on ChemRxiv supporting.pdf (58.70 MiB) download file view on ChemRxiv manuscript.pdf (30.98 MiB)
The 20S Proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells as well as in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome, an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy and boronic acid containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics and Bayesian optimization of non-bonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach to the reevaluation of non-bonded potentials making use of QM/MM dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the inhibitor.
Spin crossover (SCO) complexes are in the forefront of image, memory and sensing devices, with applications already established since for thirty years. In order to reach magnetic multistability conditions, the high-spin (HS) and low-spin (LS) states have to be carefully balanced by ligand field stabilization and spin pairing energies. Both of these effects could be effectively modelled by electronic structure theory, if the description would be accurate enough to describe these concurrent influences to within a few kJ/mol. Such a milestone would allow for the in silico-driven development of SCO complexes. However, so far, the ab initio simulation of such systems has been dominated by general gradient approximation density functional calculations. The latter can only provide the right answer for the wrong reasons, given that the LS states are grossly stabilized. In this contribution, we explore different venues for the parameterisation of hybrid functionals. A fitting set is provided on the basis of explicitly correlated coupled cluster calculations, with single- and multi-dimensional fitting approaches being tested to selected classes of hybrid functionals (hybrid, range separated and local hybrid). Promising agreement to benchmark data is found for a rescaled PBE0 hybrid functional and a local version thereof, with a discussion of different atomic exchange factors.
The simulation of nuclear quantum effects (NQE) is crucial for an accurate description of systems and processes involving light nuclei such as hydrogen atoms. Within the last years, the importance of those effects has been highlighted for a vast range of systems with tremendous implications in chemistry, biology, physics and material sciences. However, while electronic structure theory methods have become routine tools for quantum chemical investigations, there is still a lack of approaches to address NQE which are as computationally accessible and straightforward to use. In an important step forward to change this scenario, we present the first combination of the Nuclear-Electronic Orbital Hartree-Fock approach with both local and density fitting approximations (LDF-NEO-HF). This results in a low-order scaling approach which enables the inclusion of nuclear quantum effects for large systems within a fraction of a day and for small to medium size systems in minutes. Moreover, we demonstrate the qualitative accuracy and robustness of our approach to retrieve NQEs for three real use cases motivated by chemical, biological and material science applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.