Elastic arteries are significantly prestretched in an axial direction. This property minimises axial deformations during pressure cycle. Ageing-induced changes in arterial biomechanics, among others, are manifested via a marked decrease in the prestretch. Although this fact is well known, little attention has been paid to the effect of decreased prestretch on mechanical response. Our study presents the results of an analytical simulation of the inflation-extension behaviour of the human abdominal aorta treated as nonlinear, anisotropic, prestrained thin-walled as well as thick-walled tube with closed ends. The constitutive parameters and geometries for 17 aortas adopted from the literature were supplemented with initial axial prestretches obtained from the statistics of 365 autopsy measurements. For each aorta, the inflation-extension response was calculated three times, with the expected value of the initial prestretch and with the upper and lower confidence limit of the initial prestretch derived from the statistics. This approach enabled age-related trends to be evaluated bearing in mind the uncertainty in the prestretch. Despite significantly decreased longitudinal prestretch with age, the biomechanical response of human abdominal aorta changes substantially depending on the initial axial stretch was used. In particular, substituting the upper limit of initial prestretch gave mechanical responses which can be characterised by (1) low variation in axial stretch and (2) high circumferential distensibility during pressurisation, in contrast to the responses obtained for their weakly prestretched counterparts. The simulation also suggested the significant effect of the axial prestretch on the variation of axial stress in the pressure cycle. Finally, the obtained results are in accordance with the hypothesis that circumferential-to-axial stiffness ratio is the quantity relatively constant within this cycle.
The abdominal aorta is susceptible to age-related pathological changes (arteriosclerosis, atherosclerosis, aneurysm, and tortuosity). Computational biomechanics and mechanobiology provide models capable of predicting mutual interactions between a changing mechanical environment and patho-physiological processes in ageing. However, a key factor is a constitutive equation which should reflect the internal tissue architecture. Our study investigates three microstructurally-motivated invariant-based hyperelastic anisotropic models suitable for description of the passive mechanical behaviour of the human abdominal aorta at a multiaxial state of stress known from recent literature. The three adopted models have also been supplemented with a newly proposed constitutive model (limiting extensibility with fibre dispersion). All models additively decouple the mechanical response of the isotropic (elastin and smooth muscle cells represented by the neo-Hookean term) and the anisotropic (collagen) parts. Two models use exponential functions to capture large strain stiffening ascribed to the engagement of collagen fibres into the load-bearing process. The other two models are based on the concept of limiting extensibility. Perfect alignment of reinforcing fibres with two preferred directions as well as fibre dispersion are considered. Constitutive models are calibrated to the inflation-extension response adopted from the literature based on the computational model of the residually-stressed thick-walled tube. A correlation analysis of determined material parameters was performed to reveal dependence on the age. The results of the nonlinear regression suggest that limiting fibre extensibility is the concept which is suitable to be used for the constitutive description of the aorta at multiaxial stress states and is highly sensitive to ageing-induced changes in mechanical response.
It is a well-known fact that the length of an artery in situ and the length of an excised artery differs. Retraction of blood vessels is usually observed. This prestretch plays an important role in arterial physiology. We have recently determined that the decrease of axial prestretch in the human abdominal aorta is so closely correlated with age that it is suitable for forensic applications (estimation of the age at time of death for cadavers of unknown identity). Since post mortem autolysis may affect the reliability of an estimate based on axial prestretch, the present study aims to detail analysis of the effect of post mortem time. The abdominal aorta is a prominent site of atherosclerotic changes (ATH), which may potentially affect longitudinal prestretch. Thus ATH was also involved in the analysis. Axial prestretch in the human abdominal aorta, post mortem interval (PMI), and the degree of ATH were documented in 365 regular autopsies. The data was first age adjusted to remove any supposed correlation with age. After the age adjustment of the sample, the correlation analysis showed no significant PMI effects on the prestretch in non-putrefied bodies. Analysis of the prestretch variance with respect to ATH suggested that ATH is not a suitable factor to explain the prestretch variability remaining after the age adjustment. It was concluded that, although atherosclerotic plaques may certainly change the biomechanics of arteries, they do not significantly affect the longitudinal prestretch in the human abdominal aorta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.