Nuclear magnetic resonance (NMR) spectroscopy of paramagnetic molecules provides detailed information about their molecular and electron-spin structure. The paramagnetic NMR spectrum is a very rich source of information about the hyperfine interaction between the atomic nuclei and the unpaired electron density. The Fermi-contact contribution to ligand hyperfine NMR shifts is particularly informative about the nature of the metal–ligand bonding and the structural arrangements of the ligands coordinated to the metal center. In this account, we provide a detailed experimental and theoretical NMR study of compounds of Cr(III) and Cu(II) coordinated with substituted acetylacetonate (acac) ligands in the solid state. For the first time, we report the experimental observation of extremely paramagnetically deshielded 13C NMR resonances for these compounds in the range of 900–1200 ppm. We demonstrate an excellent agreement between the experimental NMR shifts and those calculated using relativistic density-functional theory. Crystal packing is shown to significantly influence the NMR shifts in the solid state, as demonstrated by theoretical calculations of various supramolecular clusters. The resonances are assigned to individual atoms in octahedral Cr(acac)3 and square-planar Cu(acac)2 compounds and interpreted by different electron configurations and magnetizations at the central metal atoms resulting in different spin delocalizations and polarizations of the ligand atoms. Further, effects of substituents on the 13C NMR resonance of the ipso carbon atom reaching almost 700 ppm for Cr(acac)3 compounds are interpreted based on the analysis of Fermi-contact hyperfine contributions.
The links between the molecular structure and nuclear magnetic resonance (NMR) parameters of paramagnetic transition-metal complexes are still relatively unexplored. This applies particularly to the contact term of the hyperfine contribution to the NMR chemical shift. We report combining experimental NMR with relativistic density functional theory (DFT) to study a series of Ru(III) complexes with 2-substituted β-diketones. A series of complexes with systematically varied substituents was synthesized and analyzed using H andC NMR spectroscopy. The NMR spectra recorded at several temperatures were used to construct Curie plots and estimate the temperature-independent (orbital) and temperature-dependent (hyperfine) contributions to the NMR shift. Relativistic DFT calculations of electron paramagnetic resonance and NMR parameters were performed to interpret the experimental observations. The effects of individual factors such as basis set, density functional, exact-exchange admixture, and relativity are analyzed and discussed. Based on the calibration study in this work, the fully relativistic Dirac-Kohn-Sham (DKS) method, the GIAO approach (orbital shift), the PBE0 functional with the triple-ζ valence basis sets, and the polarizable continuum model for describing solvent effects were selected to calculate the NMR parameters. The hyperfine contribution to the total paramagnetic NMR (pNMR) chemical shift is shown to be governed by the Fermi-contact (FC) term, and the substituent effect (H vs Br) on the through-bond FC shifts is analyzed, interpreted, and discussed in terms of spin-density distribution, atomic spin populations, and molecular-orbital theory. In contrast to the closed-shell systems of Rh(III), the presence of a single unpaired electron in the open-shell Ru(III) analogs significantly alters the NMR resonances of the ligand atoms distant from the metal center in synergy with the substituent effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.