Mechanical surface treatments, e.g., deep rolling, are widely spread finishing processes due to their ability to enhance the fatigue strength of the treated materials with means of cold working and inducement of favorable compressive residual stresses. Despite of the clear advantages of deep rolling, the controlled generation of compressive residual stresses is still a challenging task, as the process can be influenced by the pre-machining stress state of the treated material. Additionally, the exact characterization of the induced residual stress field is impacted by the specific characteristics of the applied measurement technique. Therefore, this paper is focused on the X-ray diffraction residual stress analysis of deep rolled specimens, pre-machined to achieve rough or polished surface. The deep rolling process was realized as a single-trace to avoid the influence of the other process parameters and the resulted residual stress field on the surface and in depth was investigated. Additionally, the surface residual stress profiles were determined using two different measuring devices to analyze the impact of the different measurement conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.