We identified quasiparticle states at well-defined energies inside the superconducting gap of the electron system at the LaAlO 3 -SrTiO 3 interface using tunneling spectroscopy. The states are found only in a number of samples and depend upon the thermal-cycling history of the samples. The states consist of a peak at zero energy and other peaks at finite energies, symmetrically placed around zero energy. These peaks disappear, together with the superconducting gap, with increasing temperature and magnetic field. We discuss the likelihood of various physical mechanisms that are known to cause in-gap states in superconductors and conclude that none of these mechanisms can easily explain the results. The conceivable scenarios are the formation of Majorana bound states, Andreev bound states, or the presence of an odd-frequency spin triplet component in the superconducting order parameter.
Atomically sharp domain walls in ferroelectrics are considered as an ideal platform to realize easy-to-reconfigure nanoelectronic building blocks, created, manipulated and erased by external fields. However, conductive domain walls have been exclusively observed in oxides, where domain wall mobility and conductivity is largely influenced by stoichiometry and defects. Here, we report on giant conductivity of domain walls in the non-oxide ferroelectric GaV4S8. We observe conductive domain walls forming in zig-zagging structures, that are composed of head-to-head and tail-to-tail domain wall segments alternating on the nanoscale. Remarkably, both types of segments possess high conductivity, unimaginable in oxide ferroelectrics. These effectively 2D domain walls, dominating the 3D conductance, can be mobilized by magnetic fields, triggering abrupt conductance changes as large as eight orders of magnitude. These unique properties demonstrate that non-oxide ferroelectrics can be the source of novel phenomena beyond the realm of oxide electronics.
Improper ferroelectrics are described by two order parameters: a primary one, driving a transition to long-range distortive, magnetic, or otherwise nonelectric order, and the electric polarization, which is induced by the primary order parameter as a secondary, complementary effect. Using low-temperature scanning probe microscopy, we show that improper ferroelectric domains in YMnO 3 can be locally switched by electric field poling. However, subsequent temperature changes restore the as-grown domain structure as determined by the primary lattice distortion. The backswitching is explained by uncompensated bound charges occurring at the newly written domain walls due to the lack of mobile screening charges at low temperature. Thus, the polarization of improper ferroelectrics is in many ways subject to the same electrostatics as in their proper counterparts, yet complemented by additional functionalities arising from the primary order parameter. Tailoring the complex interplay between primary order parameter, polarization, and electrostatics is therefore likely to result in novel functionalities specific to improper ferroelectrics.
Systems with long-range order like ferromagnetism or ferroelectricity exhibit uniform, yet differently oriented three-dimensional regions called domains that are separated by two-dimensional topological defects termed domain walls. A change of the ordered state across a domain wall can lead to local non-bulk physical properties such as enhanced conductance or the promotion of unusual phases. Although highly desirable, controlled transfer of these properties between the bulk and the spatially confined walls is usually not possible. Here, we demonstrate this crossover by confining multiferroic Dy0.7Tb0.3FeO3 domains into multiferroic domain walls at an identified location within a non-multiferroic environment. This process is fully reversible; an applied magnetic or electric field controls the transformation. Aside from expanding the concept of multiferroic order, such interconversion can be key to addressing antiferromagnetic domain structures and topological singularities.
We have manufactured oxide field-effect transistors using the electron system at the LaAlO3-SrTiO3 interface as a drain-source channel and measured the devices under a hydrostatic pressure of up to 1.8 GPa. These studies of oxide transistors in the high-pressure regime demonstrate remarkable stability of the devices against gate leakage and resilience to mechanical strain. They show that oxide transistors can be operated in a wide range of pressures and temperatures and open the road for future studies of oxide materials and their possible applications in electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.