Traditionally, model analysis follows qualitative, heuristic, and trial‐and‐error‐driven approaches for testing dynamic hypotheses. Only recently have other methods like loop dominance analysis or control theory been proposed for this purpose. We advocate complementing established qualitative heuristics with a quantitative method for model analysis. To that end, we propose two algorithms to detect Wolstenholme's four generic problem archetypes within models. We tested these algorithms using the Maintenance and World Dynamics models. The approach presented in this paper is a first important step towards the identification of system archetypes in system dynamics and contributes to improving model analysis and diagnosis. Furthermore, our approach goes beyond diagnosis to eliciting solution archetypes, which foster the design and implementation of effective policies. Copyright © 2015 System Dynamics Society
Objectives:Emergency Department crowding is a serious and international health care problem that seems to be resistant to most well intended but often reductionist policy approaches. In this study, we examine Emergency Department crowding in Singapore from a systems thinking perspective using causal loop diagramming to visualize the systemic structure underlying this complex phenomenon. Furthermore, we evaluate the relative impact of three different policies in reducing Emergency Department crowding in Singapore: introduction of geriatric emergency medicine, expansion of emergency medicine training, and implementation of enhanced primary care.Methods:The construction of the qualitative causal loop diagram is based on consultations with Emergency Department experts, direct observation, and a thorough literature review. For the purpose of policy analysis, a novel approach, the path analysis, is applied.Results:The path analysis revealed that both the introduction of geriatric emergency medicine and the expansion of emergency medicine training may be associated with undesirable consequences contributing to Emergency Department crowding. In contrast, enhancing primary care was found to be germane in reducing Emergency Department crowding; in addition, it has apparently no negative side effects, considering the boundary of the model created.Conclusion:Causal loop diagramming was a powerful tool for eliciting the systemic structure of Emergency Department crowding in Singapore. Additionally, the developed model was valuable in testing different policy options.
This study describes a group model building exercise that aims to develop a deeper understanding of the dynamic complexity of chronic disease care delivery within a primary care setting in Singapore, leveraging on the insights of stakeholders with personal and institutional knowledge of the health care system. A group model building exercise, which included 50 stakeholders, was used to develop the qualitative model. The qualitative model helped to bring a feedback perspective to understanding the dynamic complexity of chronic disease care delivery. The feedback perspective helped in identifying the systemic issues within chronic disease care delivery, which has the potential to inform system‐wide interventions and policies to improve health. Enhancing chronic care in Singapore will require an enhancement of both the capacity and capability of the primary care sector. © 2018 John Wiley & Sons, Ltd.
Emergency Departments (EDs) worldwide are confronted with rising patient volumes causing significant strains on both Emergency Medicine and entire healthcare systems. Consequently, many EDs are in a situation where the number of patients in the ED is temporarily beyond the capacity for which the ED is designed and resourced to manage―a phenomenon called Emergency Department (ED) crowding. ED crowding can impair the quality of care delivered to patients and lead to longer patient waiting times for ED doctor’s consult (time to provider) and admission to the hospital ward. In Singapore, total ED attendance at public hospitals has grown significantly, that is, roughly 5.57% per year between 2005 and 2016 and, therefore, emergency physicians have to cope with patient volumes above the safe workload. The purpose of this study is to create a virtual ED that closely maps the processes of a hospital-based ED in Singapore using system dynamics, that is, a computer simulation method, in order to visualize, simulate, and improve patient flows within the ED. Based on the simulation model (virtual ED), we analyze four policies: (i) co-location of primary care services within the ED, (ii) increase in the capacity of doctors, (iii) a more efficient patient transfer to inpatient hospital wards, and (iv) a combination of policies (i) to (iii). Among the tested policies, the co-location of primary care services has the largest impact on patients’ average length of stay (ALOS) in the ED. This implies that decanting non-emergency lower acuity patients from the ED to an adjacent primary care clinic significantly relieves the burden on ED operations. Generally, in Singapore, there is a tendency to strengthen primary care and to educate patients to see their general practitioners first in case of non-life threatening, acute illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.