Within periodic boundary conditions, the traditional quantum mechanical position operator is ill-defined, necessitating the use of alternative methods, most commonly the Berry phase formulation in the modern theory of polarization. Since any information about local properties is lost in this change of framework, the Berry phase formulation can only determine the total electric polarization of a system. Previous approaches toward recovering local electric dipole moments have been based on applying the conventional dipole moment operator to the centers of maximally localized Wannier functions (MLWFs). Recently, another approach to local electric dipole moments has been demonstrated in the field of subsystem density functional theory (DFT) embedding. We demonstrate in this work that this approach, aside from its use in ground state DFT-based molecular dynamics, can also be applied to obtain electric dipole moments during real-time propagated time-dependent DFT (RT-TDDFT). Moreover, we present an analogous approach to obtain local electric dipole moments from MLWFs, which enables subsystem analysis in cases where DFT embedding is not applicable. The techniques were implemented in the quantum chemistry software CP2K for the mixed Gaussian and plane wave method and applied to cis-diimide and water in the gas phase, cis-diimide in aqueous solution, and a liquid mixture of dimethyl carbonate and ethylene carbonate to obtain absorption and infrared spectra decomposed into localized subsystem contributions.
Dynamic nuclear polarization (DNP) is a nuclear magnetic resonance (NMR) hyperpolarization technique that mediates polarization transfer from unpaired electrons with large thermal polarization to NMR-active nuclei via microwave (mw) irradiation. The ability to generate arbitrarily shaped mw pulses using arbitrary waveform generators allows for remarkable improvement of the robustness and versatility of DNP. We present here novel design principles based on single-spin vector effective Hamiltonian theory to develop new broadband DNP pulse sequences, namely, an adiabatic version of XiX (X–inverse X)–DNP and a broadband excitation by amplitude modulation (BEAM)–DNP experiment. We demonstrate that the adiabatic BEAM-DNP pulse sequence may achieve a 1 H enhancement factor of ∼360, which is better than ramped-amplitude NOVEL (nuclear spin orientation via electron spin locking) at ∼0.35 T and 80 K in static solids doped with trityl radicals. In addition, the bandwidth of the BEAM-DNP experiments (~50 MHz) is about three times the 1 H Larmor frequency. The generality of our theoretical approach will be helpful in the development of new pulsed DNP sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.