This article deals with the effect of the ignition timing on the output parameters of a spark-ignition engine. The main assessed parameters include the output parameters of the engine (engine power and torque), cylinder pressure variation, heat generation and burn rate. However, the article also discusses the effect of the ignition timing on the temperature of exhaust gases, the indicated mean effective pressure, the combustion duration, combustion stability, etc. All measurements were performed in an engine test room in the Department of Technology and Automobile Transport at Mendel University in Brno, on a four-cylinder AUDI engine with a maximum power of 110 kW, as indicated by the manufacturer. To control and change the ignition timing of the engine, a fully programmable Magneti Marelli control unit was used. The experimental measurements were performed on 8 different ignition timings, from 18 °CA to 32 °CA BTDC at wide throttle open and a constant engine speed (2500 rpm), with a stoichiometric mixture fraction. The measurement results showed that as the ignition timing increases, the engine power and torque also increase. The increase in these parameters is a reflection of higher pressure in the cylinder, the maximum value of which is achieved at a higher ignition timing near top dead centre in thepower stroke. In these conditions we can expect higher engine efficiency. It was also found that the combustion is more stable with a higher value of ignition timing. No significant difference was found in the combustion duration.
The article deals with the issue of high-pressure indication of a diesel tractor engine Z 1727, which was fitted with a modern electronically controlled common-rail injection system. The aim of the study is to evaluate the influence of the adjustment of the fuel system – start of injection (SOI) timings and the rail pressure (PRAIL) – on the pressure development in the cylinder (PCYL), the heat release (HR) and the combustion noise level (CNLA). Furthermore, the article examines the influence of pilot and post fuel injections on the CNLA. The experiments were conducted at constant speed (1480 rpm) with four PRAILs and different SOI timings. As the results of measurements have shown, higher rail pressure causes higher pressure and a release of a larger amount of heat in the cylinder. These two parameters are the basic prerequisite for higher engine efficiency – higher power output of the engine at lower fuel consumption and decreased production of harmful emissions. Other advantages of the common-rail fuel system include the potential of dividing the main injection dose into the pilot injection and main injection, as well as the potential post injection. The measurements have further demonstrated that including a pilot injection phase significantly contributes to a decrease in combustion noise level as well as a more even, quieter operation of the engine.
This paper deals with reduction of NOx-emission of a diesel engine with multiple injection pump by SCR catalytic converter. Main aim of the measurement was the detection of SCR catalyst converter efficiency. Tests were realized at the Research and Development workplace of Zetor Tractor a.s. Used engine was equipped with a multiple injection pump with electromagnetic regulator of a fuel charge. During the experiment selective catalytic reduction and diesel particulate filter were used as an after treatment of harmful pollutants reduction. Testing cycle of the eight-point test was chosen and Non-Road Steady Cycle (NRSC) was maintained according to 97/68/EC directive. Results confirmed the dependencies between temperatures of SCR catalyst and exhaust gases and the volume of exhaust gases on efficiency of SCR catalyst. During the operation load of the engine, selective catalytic reduction reached efficiency over 90 %. Used after treatment system is suitable for reduction of harmful pollutants according to the Tier 4f norm.
The paper deals with the evaluation of the effect of hen breed on the egg response to the nondestructive impact. The eggs of four hen breeds (Leghorn White, Rhode Island Red, Bar Plymouth Rock and Sussex Light) were tested. An experimental system was set up to generate the impact force, measure the response wave signal, and analyse the frequency spectrum in the three direction of loading (sharp end, equator, blunt end). The egg dynamic resonance frequency was obtained through the analysis of the dynamically measured frequency response of an egg excited by light impact of a bar. The results showed that the dominant frequency was significantly affected by the hen bread and not significantly affected by excitation velocity. The dominant frequency enables to estimate the eggshell strength under quasi static compression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.