Recent megathrust events in Tohoku (Japan), Maule (Chile), and Sumatra (Indonesia) were well recorded. Much has been learned about the dominant physical processes in megathrust zones: (partial) locking of the plate interface, detailed coseismic slip, relocking, afterslip, viscoelastic mantle relaxation, and interseismic loading. These and older observations show complex spatial and temporal patterns in crustal deformation and displacement, and significant differences among different margins. A key question is whether these differences reflect variations in the underlying processes, like differences in locking, or the margin geometry, or whether they are a consequence of the stage in the earthquake cycle of the margin. Quantitative models can connect these plate boundary processes to surficial and far‐field observations. We use relatively simple, cyclic geodynamic models to isolate the first‐order geodetic signature of the megathrust cycle. Coseismic and subsequent slip on the subduction interface is dynamically (and consistently) driven. A review of global preseismic, coseismic, and postseismic geodetic observations, and of their fit to the model predictions, indicates that similar physical processes are active at different margins. Most of the observed variability between the individual margins appears to be controlled by their different stages in the earthquake cycle. The modeling results also provide a possible explanation for observations of tensile faulting aftershocks and tensile cracking of the overriding plate, which are puzzling in the context of convergence/compression. From the inversion of our synthetic GNSS velocities we find that geodetic observations may incorrectly suggest weak locking of some margins, for example, the west Aleutian margin.
<p>Plate boundary deformation zones represent a challenge in terms of understanding their underlying geodynamic drivers. Active deformation is well constrained by GNSS observations in the SW Balkans, Greece and W Turkey, and is characterized by variable extension and strike slip in an overall context of slow convergence of the Nubia plate relative to stable Eurasia. Diverse, and all potentially viable, forces and models have been proposed as the cause of the observed surface deformation, e.g., asthenospheric flow, horizontal gravitational stresses (HGSs) from lateral variations in gravitational potential energy, and rollback of regional slab fragments. We use Bayesian inference to constrain the relative contribution of the proposed driving and resistive regional forces.</p> <p>&#160;</p> <p>Our models are spherical 2D finite element models representing vertical lithospheric averages. In addition to regional plate boundaries, the models include well-constrained fault zones like north and south branches of the North Anatolian Fault, Gulf of Corinth and faults bounding the Menderes Massif. Boundary conditions represent geodynamic processes: (1) far-field relative plate motions; (2) resistive fault tractions; (3) HGSs mainly from lateral variations in topography and Moho topology; (4) slab pull and trench suction at subduction zones; and (5) active asthenospheric convection. The magnitude of each of these is a parameter in a Bayesian analysis of ~100,000 models and horizontal GNSS velocities. The search yields a probability distribution of all parameter values including model error, allowing us to determine mean/median parameter values, robustly estimate parameter uncertainties, and identify tradeoffs (i.e., parameter covariances).</p> <p>&#160;</p> <p>The average viscosity of the overriding plate is well resolved 4x10^22 Pa.s, which is higher than published models without faults. Westward velocities of Anatolia and significant trench suction forces from the Hellenic slab, including along the Pliny-Strabo STEP Fault, are required to reproduce the observations. Slab pull and convective tractions have a small imprint on the observed deformation of the overriding plate. HGSs are less important for fitting the regional pattern of velocities. Resistive tractions on most plate boundaries and faults are low.</p>
<p>The Aegean Sea region sits in a complex deformation zone between the African, Eurasian, and Anatolian plates. It contains the Hellenic subduction zone, where African oceanic lithosphere descends under the Aegean Sea. The subducting slab may be torn or fragmented at both its eastern (Pliny-Strabo zone) and western (Kefalonia fault) edges. The overriding Aegean Sea is cut by numerous active normal faults accommodating north-south extension. On top of this, the collision of Arabia with Anatolia farther east drives Anatolia and the connected Aegean Sea westward, resulting in the left lateral North Anatolian fault (and its extension into the Aegean), as well as greater relative velocities between the subducting slab and the overriding plate. These geodynamic processes and geological features all affect the present-day kinematics of the Aegean region.</p><p>Surface velocities measured at Global Navigation Satellite System stations throughout the Aegean provide important constraints on these underlying geodynamic forces. Previous studies have attributed the surface motions to some combination of plate boundary interactions, lateral variations in gravitational potential energy (GPE), subduction and slab tearing, internal faulting, and mantle tractions. The expected imprint of these processes also varies with the rheology of the lithosphere. Up to this point, there has been little effort to systematically evaluate the relative contributions of these different forces. In this study, we implement a Markov Chain Monte Carlo approach to efficiently and precisely determine the likely values and uncertainties of these geodynamic forces and the lithospheric rheology. We also identify trade-offs between processes that produce similar surface signals.</p><p>Preliminary results indicate that the dominant imprint on surface velocities comes from the southwestward rollback of the Hellenic slab and the westward escape of Anatolia. Although lateral variations in GPE also have an effect on the velocities, these are generally less important than slab rollback and Anatolian escape. At a lithospheric scale, the North Anatolian fault has little shear resistance to allow a relatively sharp velocity transition across it. Including resistive tractions on intraplate faults within the Aegean Sea has a smaller effect on the modeled velocity field. By using the velocity field to guide a statistical analysis of the geodynamic drivers, we have been able to better constrain the primary drivers of deformation in the eastern Mediterranean.</p>
This a preprint and has not been peer reviewed. Data may be preliminary.
<p>Plate boundary deformation zones represent a challenge in terms of understanding their underlying geodynamic drivers. Active deformation is well constrained by GNSS observations in the SW Balkans, Greece and W Turkey, and is characterized by variable extension and strike slip in an overall context of slow convergence of the Nubia plate relative to stable Eurasia. Diverse, and all potentially viable, forces have been proposed as the cause of the observed surface deformation, e.g., asthenospheric flow, horizontal gravitational stresses (HGSs) from lateral variations in gravitational potential energy, and rollback of the Hellenic slab. We use Bayesian inference to constrain the relative contribution of the proposed driving and resistive regional forces.</p><p>&#160;</p><p>Our models are spherical 2D finite element models representing vertical lithospheric averages. In addition to regional plate boundaries, the models include well-constrained fault zones like north and south branches of the North Anatolian Fault, Gulf of Corinth and faults bounding the Menderes Massif. Boundary conditions represent geodynamic processes: (1) far-field relative plate motions; (2) resistive fault tractions; (3) HGSs mainly from lateral variations in topography and Moho topology; (4) slab pull and trench suction at subduction zones; and (5) coupling between the lithosphere and the underlying asthenosphere. The magnitude of each of these is a parameter in a Bayesian analysis of ~100,000 models and horizontal GNSS velocities. The search yields a probability distribution over all parameters, allowing us to determine mean/median parameter values, robustly estimate parameter uncertainties, and identify tradeoffs (i.e., parameter covariances).</p><p>&#160;</p><p>The average viscosity of the overriding plate is well resolved 3-4 &#183;10<sup>22</sup> Pa.s, which is higher than published models without faults. Significant trench suction forces from the Hellenic slab act on the overriding Aegean Sea, including along the Pliny-Strabo STEP Fault. Slab pull and convective tractions have little imprint on the observed deformation of the overriding plate. HGSs are necessary to explain local features in the velocity field, particularly in the Aegean Sea, but are less important for fitting the regional pattern of velocities. Resistive tractions on most plate boundaries and faults are low. The best-fitting models compare well with paleomagnetic rotations and geological fault slip rates from previous studies.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.