The Future Fuels project combines research in several institutes of the German Aerospace Center (DLR) on the production and use of synthetic fuels for space, energy, transportation, and aviation. This article gives an overview of the research questions considered and results achieved so far and also provides insight into the multidimensional and interdisciplinary project approach. Various methods and models were used which are embedded in the research context and based on established approaches. The prospects for large-scale fuel production using renewable electricity and solar radiation played a key role in the project. Empirical and model-based investigations of the technological and cost-related aspects were supplemented by modelling of the integration into a future electricity system. The composition, properties, and the related performance and emissions of synthetic fuels play an important role both for potential oxygenated drop-in fuels in road transport and for the design and certification of alternative aviation fuels. In addition, possible green synthetic fuels as an alternative to highly toxic hydrazine were investigated with different tools and experiments using combustion chambers. The results provide new answers to many research questions. The experiences with the interdisciplinary approach of Future Fuels are relevant for the further development of research topics and co-operations in this field.Synthetic fuels based on renewable energies (RE) are widely seen as a key element to achieving climate-neutral transport (e.g., [1,2]). As liquid hydrocarbons have a high energy and power density, they are primarily discussed as fuels for (heavy) road vehicles, ships, and aircraft. Due to their low storage and transport losses, they are also conceivable as a complementary long-term electricity storage option [3]. The challenges of producing and implementing these fuels are manifold. Chemical processes and renewable electrical or thermal energy can be used to produce liquid hydrocarbons from various carbon sources and hydrogen (and sometimes oxygen). Synthetic fuels have several advantages: they can be easily integrated into our existing energy and mobility infrastructures, can be used in all areas of the transport sector, and they can be optimized with regard to their chemical properties. The main disadvantages are the high energy losses and production costs.In this research context, eleven research groups at the German Aerospace Center (DLR) are working together on the Future Fuels project on synthetic fuels. The aim of the interdisciplinary approach is to realize synergies and joint research activities, as well as new research impulses through different perspectives. The scientists and engineers are investigating how synthetic fuels can be produced using solar energy and electrolysis processes (Solar Fuels), and are developing concepts for the re-conversion of these fuels into electricity. They are working on emission-optimized fuels for transport and aviation (Designer Fuels), as well as advanced space ap...
Regarding the research on alternatives for monopropellant hydrazine, several so called green propellants are currently under investigation or qualification. Aside others, the DLR Institute of Space Propulsion investigates a N 2 O/C 2 H 4 premixed green propellant. During the research activities, flashback from the rocket combustion chamber into the feeding system has been identified as a major challenge when using the propellant mixture. This paper shows the results of ignition experiments conducted in a cylindrical, optical accessible ignition chamber. During the ignition and flame propagation process, pressure, temperature and high-speed video data were collected. The high speed video data were used to analyze the flame propagation speed. The obtained propagation speed was about 20 m/s at ignition, while during further propagation of the flame speeds of up to 120 m/s were measured. Additionally, two different porous materials as flame arresting elements were tested: Porous stainless steel and porous bronze material. For both materials Peclet numbers for flashback were derived. The critical Peclet number for the sintered bronze material was around 20, while for the sintered stainless steel the critical Peclet number seems to be larger than 40. Due to the test results, sintered porous materials seem to be suitable as flashback arresters.
In 2014 DLR started research activities focused on premixed monopropellants consisting of nitrous oxide and hydrocarbons. Those propellants offer promising characteristics as they are non-toxic, deliver a high I sp consist of components with low cost and could simplify a propulsion system due to self-pressurized operation. Initially DLR chose a mixture of nitrous oxide (N 2 O) and ethene (C 2 H 4 ). In the course of the project, a mixture of nitrous oxide and ethane (C 2 H 6 ) was included to the research activities. The activities are part of DLR's Future Fuels project and divided into five main parts: 1) investigations of the combustion behavior of the propellant in a rocket combustor, 2) testing and developing of flame arresters, 3) development and reduction of reaction mechanisms, 4) numerical simulations of the combustion process and 5) basic miscibility investigations. The emphasis within the project is on the first three tasks, while the last two tasks are used to widen the knowledge about the Head Facilities Group, Propellants Department, AIAA Member.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.