Preparation of coatings simultaneously exhibiting high hardness and enhanced fracture resistance is a hot topic, as nowadays used ceramic protective coatings show difficulties to cope with increased demands due to their inherent brittleness. Material exhibiting seemingly contradictory combination of mechanical properties-high hardness and moderate ductility enhancing the fracture resistance-was recently predicted by ab initio calculations in the crystalline X2BC system. The presented study is focussed on the study of the influence of the C/W ratio on the microstructure, the content of different chemical bonds and the mechanical properties of W-B-C coatings prepared by magnetron sputtering at moderate temperature. It was shown that change of the deposition conditions to achieve different C/W ratios influences the energy flux and momentum transfer to the coating. The coating with the lowest C/W ratio experienced the highest energy flux and momentum transfer, which resulted in a dense coating microstructure. The microstructure progressively coarsened as the C/W ratio increased, i.e. as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.