This article presents laboratory tests, with the purpose being to verify the suitability of standard optical fibres in a tight jacket for advanced strain analysis within concrete members. An optical reflectometer was used to enable the optical signal to be processed on the basis of the Rayleigh scattering phenomenon, so that strains and/or temperature changes were determined along the length of the measuring fibre. The measurements were carried out continuously in a geometrical sense (distributed measurements), with a spatial resolution starting from as fine as 5 mm. The arrangement of optical fibres inside the heterogeneous concrete medium and on its surface allowed for the identification and detailed analysis of local phenomena such as cracks. Remote and early location of structural damage with an estimation of its scale provides new opportunities for the monitoring of the structural health of reinforced concrete structures, facilitating the interpretation of its behaviour as well as failure risk management based on comprehensive and reliable measurement data. If traditional spot techniques are used, this approach is not possible. The aim of the initial studies was to analyse the strain distributions over compressed and tensioned measurement sections located on the surface of a cylindrical specimen of concrete. In the tests which followed, the reinforced concrete rod was eccentrically tensioned with fibre optics installed inside. Qualitative and quantitative verification of crack widths was made, with a narrow range up to 0.05 mm and a wider one to 0.30 mm. The results of the studies show very good accuracy of optical fibre sensor technology as a reference technique during the analysis of microcracks and narrow cracks, and moderate accuracy in the case of wider cracks. Despite using optical fibres in a tight jacket which mediates in strain transfer, the results obtained can be very suitable for the assessment of the structural condition of the member under consideration. It is also worth noting that the tests conducted indicate the effectiveness of distributed optical fibre technology for the analysis of concrete homogeneity and its structural behaviour within compressed areas, as it is possible to calculate strains over measuring bases that start from lengths as short as 5 mm.
The article presents research on the performance of composite and monolithic sensors for distributed fibre optic sensing (DFOS). The introduction summarises the design of the sensors and the theoretical justification for such an approach. Lessons learned during monitoring cracked concrete are summarised to highlight what features of the DFOS tools are the most favourable from the crack analysis point of view. Later, the results from full-size laboratory concrete specimens working in a cracked state were presented and discussed in reference to conventional layered sensing cables. The research aimed to compare monolithic sensors and layered cables embedded in the same reinforced concrete elements, which is the main novelty. The performance of each DFOS nondestructive tool was investigated in the close vicinity of the cracks—both the new ones, opening within the tension zone, and the existing ones, closing within the compression zone. The qualitative (detection) and quantitative (widths estimation) crack analyses were performed and discussed. Finally, the examples of actual applications within concrete structures, including bridges, are presented with some examples of in situ results.
The article presents research on the performance of different distributed fibre optic sensing (DFOS) tools, including both layered cables and monolithic composite sensors. The main need for the presented research was related to the growing applications of the DFOS techniques for the measurements of cracked concrete structures. There are no clear guidelines on the required parameters of the DFOS tools, which, despite their different designs, are offered for the same purpose (strain sensing). The state-of-the-art review and previous experiences show noticeable differences in the quality of the results depending on the applied DFOS tool. The technical construction of selected solutions was described with its theoretical consequences, and then laboratory tests on full-size reinforced concrete beams were discussed. Beams equipped with embedded tools were investigated in four-point bending tests, causing the formation of multiple cracks in the tension zone along the beams’ length. The results in the form of strain profiles registered by selected DFOS tools were analysed regarding the qualitative (crack detection) and quantitative (width estimation) crack assessment. The comparison between crack-induced strain profiles was based on a new parameter called crack shape coefficient CSC, which could be applied to assess the effectiveness of the particular DFOS tool in crack detection and analysis. It was one of the world’s first research allowing for such direct comparison between the layered and monolithic sensing tools. The summary indicates practical guidelines referring to the preferable design of the tools best suitable for crack measurements, as well as the field proofs based on data from two concrete bridges in Germany.
The implantation of tested multifocal intraocular lenses provides good near and distance visual acuity. We did not observe any statistically significant differences between the tested multifocal intraocular lenses with regard to best-corrected distance visual acuity, presence of glare and halo, as well as satisfaction with vision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.