Variational quantum algorithms (VQAs) optimize the parameters θ of a parametrized quantum circuit V(θ) to minimize a cost function C. While VQAs may enable practical applications of noisy quantum computers, they are nevertheless heuristic methods with unproven scaling. Here, we rigorously prove two results, assuming V(θ) is an alternating layered ansatz composed of blocks forming local 2-designs. Our first result states that defining C in terms of global observables leads to exponentially vanishing gradients (i.e., barren plateaus) even when V(θ) is shallow. Hence, several VQAs in the literature must revise their proposed costs. On the other hand, our second result states that defining C with local observables leads to at worst a polynomially vanishing gradient, so long as the depth of V(θ) is $${\mathcal{O}}(\mathrm{log}\,n)$$ O ( log n ) . Our results establish a connection between locality and trainability. We illustrate these ideas with large-scale simulations, up to 100 qubits, of a quantum autoencoder implementation.
Compiling quantum algorithms for near-term quantum computers (accounting for connectivity and native gate alphabets) is a major challenge that has received significant attention both by industry and academia. Avoiding the exponential overhead of classical simulation of quantum dynamics will allow compilation of larger algorithms, and a strategy for this is to evaluate an algorithm's cost on a quantum computer. To this end, we propose a variational hybrid quantum-classical algorithm called quantum-assisted quantum compiling (QAQC). In QAQC, we use the overlap between a target unitary U and a trainable unitary V as the cost function to be evaluated on the quantum computer. More precisely, to ensure that QAQC scales well with problem size, our cost involves not only the global overlap Tr(V † U ) but also the local overlaps with respect to individual qubits. We introduce novel short-depth quantum circuits to quantify the terms in our cost function, and we prove that our cost cannot be efficiently approximated with a classical algorithm under reasonable complexity assumptions. We present both gradient-free and gradient-based approaches to minimizing this cost. As a demonstration of QAQC, we compile various one-qubit gates on IBM's and Rigetti's quantum computers into their respective native gate alphabets. Furthermore, we successfully simulate QAQC up to a problem size of 9 qubits, and these simulations highlight both the scalability of our cost function as well as the noise resilience of QAQC. Future applications of QAQC include algorithm depth compression, black-box compiling, noise mitigation, and benchmarking. arXiv:1807.00800v5 [quant-ph]
Given a microscopic lattice Hamiltonian for a topologically ordered phase, we propose a numerical approach to characterize its emergent anyon model and, in a chiral phase, also its gapless edge theory. First, a tensor network representation of a complete, orthonormal set of ground states on a cylinder of infinite length and finite width is obtained through numerical optimization. Each of these ground states is argued to have a different anyonic flux threading through the cylinder. Then a quasiorthogonal basis on the torus is produced by chopping off and reconnecting the tensor network representation on the cylinder. From these two bases, and by using a number of previous results, most notably the recent proposal of Y. Zhang et al. [Phys. Rev. B 85, 235151 (2012)] to extract the modular U and S matrices, we obtain (i) a complete list of anyon types i, together with (ii) their quantum dimensions d(i) and total quantum dimension D, (iii) their fusion rules N(ij)(k), (iv) their mutual statistics, as encoded in the off-diagonal entries S(ij) of S, (v) their self-statistics or topological spins θ(i), (vi) the topological central charge c of the anyon model, and, in a chiral phase (vii) the low energy spectrum of each sector of the boundary conformal field theory. As a concrete application, we study the hard-core boson Haldane model by using the two-dimensional density matrix renormalization group. A thorough characterization of its universal bulk and edge properties unambiguously shows that it realizes a ν=1/2 bosonic fractional quantum Hall state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.