This paper presents the possible use for IR spectroscopy to reveal skid marks left by cars equipped with Anti-lock Braking System. Detailed analysis of literature showed that there is no method that can be used in order to investigate this kind of tire marks. Up till now only two techniques have been devised. The first one is Method of Image Refinement which consists of transforming the image from the scene of the accident using dedicated graphics software. Second method includes analysis of traces using a thermal imaging camera. This study presents an innovative approach to the problem. Numerous analyses using IR spectroscopy were conducted to check the suitability of this method. The research performed on a Thermo Scientific FTIR Nicolet iS50 Spectrophotometer with an ATR attachment. 40 samples from 10 different types of asphalt were prepared. Each sample was measured 3 times to create its spectrum. The results were analyzed thoroughly using the dedicated SpectraGryph software. Analysis show that the wavelength which makes the braking marks visible is found within the mid-infrared range. Finally, it was found wavelength in which skid marks should be visible. This range is located in the mid-infrared.
Skid marks are an important source of information for road accident investigators. Up till now, analyzing them was a difficult task when ABS equipped vehicles are considered. Authors managed to solve this issue using IR spectroscopy. There are several factors to consider when investigating brake marks and one of them is slip ratio that was taken into account in this paper. Results show that for slip of 10% and more, IR spectroscopy technology was successful at revealing skid marks.
Presented paper discusses new approach to EES parameter determination in frontal car crash based on the tensor product of Legendre polynomials. In this paper Subcompact Car Class was analyzed using that method. Data that was used to perform analyses introduced in this paper was taken from National Highway Traffic Safety Administration (NHTSA) database. Such database consists of considerate number of test cases along with various information including vehicle mass, crash velocity, chassis deformation etc. New approach to the problem of determining the EES parameter was necessary due to the low accuracy of the currently used methods. Linear models used up till now for accident reconstruction show significant error as the relationship between mass, velocity and deformation cannot be well approximated with a flat plane. Proposed model produces better results, because of the nonlinear dependence of said parameters. This paper also includes a calculation example presenting a comparison of linear and nonlinear method on an actual crash test.
Presented paper discusses a new, nonlinear approach to EES (Equivalent Energy Speed) parameter determination in frontal car collisions. This method is based on tensor product of Legendre polynomials and in this case considers Luxury car class. Methods that are used up till now are based on a linear dependency between mass, velocity and deformation. This is of course a simplification that was necessary, due to limitation in computation power of computers when this method was introduced decades ago. The contemporary resources allowed Authors to develop a much more sophisticated method. The mathematical model was developed using data shared by National Highway Traffic Safety Administration (NHTSA). This database covers a large number of test cases along with various information including vehicle mass, crash velocity, chassis deformation etc. New method proves to be more accurate than the currently used approach utilizing linear dependency of deformation force and deformation of the vehicle.
Detailed analysis of literature showed that there is no method that can be used in order to investigate skid marks left by vehicles equipped with ABS. Authors decided to identify braking trace by using IR spectroscopy. Preliminary studies have been performed and results were promising. Due to that fact authors decided to conduct detailed research where the influence of various factors on the possibility of revealing breaking traces would be taken into account. This article is the first in a series of articles taking into account the influence of various factors on the possibility of revealing breaking marks using IR spectroscopy. In this article the influence of the type of asphalt was studied. Authors conducted tests with the most popular types of asphalts used for the wearing course. 100 samples from 5 different types of asphalt were prepared. Each sample was measured 3 times to create its spectrum. The results were analyzed thoroughly using the dedicated SpectraGryph software. The analysis showed that for 4 out of 5 types of tested asphalt, the braking traces were visible at a wavelength of approximately 11 500 nm. Only for the rubberized asphalt there weren’t possibility to reveal skid mark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.