Habitat use and preferences may be subject to spatial and temporal changes. However, long-term studies of species–habitat relationships are the exception. In the present research, long-term trends in habitat use by an alpine ungulate, the Tatra chamois Rupicapra rupicapra tatrica, were analyzed. We examined how environmental changes attributable to climate change, removal of sheep, and habituation to hikers, which took place over the last half-century have changed the spatial distribution of animals. Data on the localities of groups sighted between 1957 and 2013 during autumnal population surveys were used to evaluate habitat associations: these were correlated with year, group size, population size, and climatic conditions. The results indicate that the Tatra chamois is tending, over the long term, to lower its altitude of occurrence, reduce its average distance to hiking trails, and stay less often on slopes with a southerly aspect. These trends are independent of group size, population size, and the weather conditions prevailing during observations, though not for altitude, where increases in air temperature are related to finding chamois at higher elevations. The proportion of alpine meadows and slope in the places used by chamois is correlated with population size, while the proportion of areas with trees and/or shrubs is correlated with group size and air temperature, though long-term changes were not evident for these variables. To the best of our knowledge, this work is the first to document long-term trends in habitat use by ungulates. It shows that a species’ ecology is influenced by human-induced changes: abandonment of pasturage, high-mountain tourism, and climate changes, which constitute the most probable reasons for this aspect of behavioral evolution in the Tatra chamois.
Environmental factors have strong influence on activity of alpine ungulates. However, the presence and activities of people in high mountains have been growing rapidly and have led to the advent of human-induced factors, which may modify the time budget. In this study, we examined the influence of natural and human-induced factors on the daytime budget of Tatra chamois Rupicapra rupicapra tatrica. On average, chamois spent 46% of their time foraging, 40% resting, 13% moving around and 1% on social behaviour. The amount of time devoted to particular categories of behaviour was influenced by the time of day, herd size, weather conditions and human disturbance. Human disturbance and the time of day had the highest effect on the proportion of foraging in the daytime budget, which increased as the day progressed and at greater distances from the nearest hiking trail. These two factors also increased the amount of time spent resting, which peaked during the afternoon hours and at greater distances from the nearest trail. The time spent moving around decreased with increasing herd size, distance from the nearest trail and as the day progressed. Males devoted less time to foraging and more to resting and moving around than females. The intensity of human-induced factors is particularly important for a population inhabiting a small, isolated area, as is the case with strictly high-mountain species.
Until recently animals inhabiting mountain areas were relatively free from disturbance by people but they are now coming under increasing pressure. Tourism, especially that involving large numbers of people, is having an ever more detrimental effect on the natural resources of high mountains, even in protected areas. We analyse the effect of tourist pressure on the population of the Tatra chamois Rupicapra rupicapra tatrica, which inhabits the strictly protected high-altitude habitats of the Tatra mountains (Carpathians, Poland). The Kasprowy Wierch cable car system, in operation since 1936, was modernized in 2007; as a consequence 50% more people can now be carried into the chamois’ habitat. The effect of this sudden increase in tourist pressure has been to reduce the size of herds (3.9 vs 5.3 individuals) and to increase the distance between the animals and the cable car station (1,664.0 vs 693.0 m), the cable car infrastructure (1,415.0 vs 467.8 m) and adjacent ski-lifts and ski pistes (1,214.2 vs 494.3 m). The distance to the marked hiking trails has not changed, however. Following the modernization of the cable cars, larger herds of chamois have been seen at greater distances from the tourist infrastructure. Our results indicate the adverse impact of this mass tourism. Human activities in high-mountain ecosystems need to have due consideration for the requirements of wild species, and the number of visitors needs to be controlled.
Global warming is considered as a phenomenon having a negative effect on animals living in cold climate. However, herbivorous species inhabiting cold zones may potentially benefit from increase of temperature as this influence duration of vegetation period and increase food resources. In this study, we analyze the impact of climate factors on the long-term dynamics of an isolated and unhunted population of the Tatra chamois Rupicapra rupicapra tatrica. The population growth rate, based on autumnal chamois counting carried out from 1957 to 2016, were correlated with a set of climatic variables. We tested the hypothesis that high temperatures in summer could have a positive impact on the population, since they influence vegetation growth, which ensure food resources. On the other hand, heavy falls of snow and long-lasting and deep snow cover could adversely affect the population by reducing population survival during the winter. The results of this study indicate that climatic variables best explaining the autoregressed population growth rate (from the autumn of year t-1 to the autumn of year t) were the mean summer temperature of year t-1: the population increase was greater following a warmer summer in year t-1 and, in lower extent, the total precipitation during winter: the population decrease was greater following a winter with heavy snowfall. Duration and thickness of snow cover have no negative effect on population growth rate. The results indicate that the population dynamic of the Tatra chamois is determined in the long term by weather conditions, mainly by temperature, when kids are birthing and growing. The results of this work highlight that climatic changes may be responsible for the population dynamic of high-mountain species. Climate warming may lead to increase in duration of vegetation period in cold climatic zones, what may in turn have positive effect on herbivorous species, which relay upon food resources limited by low temperatures within vegetation period.Electronic supplementary materialThe online version of this article (10.1007/s00484-018-1619-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.