Nocturnal avian migration flyways remain an elusive concept, as we have largely lacked methods to map their full extent. We used the network of European weather radars to investigate nocturnal bird movements at the scale of the European flyway. We mapped the main migration directions and showed the intensity of movement across part of Europe by extracting biological information from 70 weather radar stations from northern Scandinavia to Portugal, during the autumn migration season of 2016. On average, over the 20 nights and all sites, 389 birds passed per 1 km transect per hour. The night with highest migration intensity showed an average of 1621 birds km–1 h–1 passing the radar stations, but there was considerable geographical and temporal variation in migration intensity. The highest intensity of migration was seen in central France. The overall migration directions showed strong southwest components. Migration dynamics were strongly related to synoptic wind conditions. A wind‐related mass migration event occurred immediately after a change in wind conditions, but quickly diminished even when supporting winds continued to prevail. This first continental‐scale study using the European network of weather radars demonstrates the wealth of information available and its potential for investigating large‐scale bird movements, with consequences for ecosystem function, nutrient transfer, human and livestock health, and civil and military aviation.
Migratory animals provide a multitude of services and disservices—with benefits or costs in the order of billions of dollars annually. Monitoring, quantifying, and forecasting migrations across continents could assist diverse stakeholders in utilizing migrant services, reducing disservices, or mitigating human–wildlife conflicts. Radars are powerful tools for such monitoring as they can assess directional intensities, such as migration traffic rates, and biomass transported. Currently, however, most radar applications are local or small scale and therefore substantially limited in their ability to address large-scale phenomena. As weather radars are organized into continent-wide networks and also detect “biological targets,” they could routinely monitor aerial migrations over the relevant spatial scales and over the timescales required for detecting responses to environmental perturbations. To tap these unexploited resources, a concerted effort is needed among diverse fields of expertise and among stakeholders to recognize the value of the existing infrastructure and data beyond weather forecasting.
At present, urban areas cover almost 3% of the Earth's terrestrial area, and this proportion is constantly increasing. Although urbanization leads to a decline in biodiversity, at the same time it creates extensive habitats that are exploited by an assemblage of organisms, including birds. The species composition and density of birds nesting in towns and cities are determined by the types of buildings, the structure and maturity of urban greenery, and habitat diversity. In contrast, the habitat traits shaping the community of birds wintering in urban areas are not known. The aim of this work was to assess the influence of habitat structure, food resources and the urban effects (pollution, noise, artificial light) on an assemblage of birds overwintering in an urban area. It was carried out in 2014 and 2015 in the city of Kraków (southern Poland), on 56 randomly chosen sample plots, in which the composition, density and interseasonal similarity of bird assemblage were assessed with line transect method. A total of 64 bird species (mean = 17.7 ± 4.9 SD species/plot) was recorded. The mean density was 89.6 ind./km ±63.3 SD. The most numerous species were Great Tit Parus major, Magpie Pica pica, Blackbird Turdus merula, Blue Tit Cyanistes caeruleus, Rook Corvus frugilegus, Fieldfare Turdus pilaris and House Sparrow Passer domesticus. Noise adversely affected species numbers and density, but artificial light acted positively on the density of birds and their interseasonal stability. The species richness and density of birds were also determined by the number of food sources available (e.g. bird-feeders). In addition, the greater the proportion of open areas, the fewer species were recorded. In contrast, the more urban greenery there was, the greater the density of the entire bird assemblage. Urban infrastructure (buildings, roads, refuse tips) had a positive effect on the interseasonal stabilization of the species composition of wintering birds. The results of this work indicate that the urban effect, i.e. noise and light pollution, apart from purely habitat factors, provide a good explanation for the species richness, density and stability of bird assemblage wintering in urban areas.
Migratory animals are affected by various factors during their journeys, and the study of animal movement by radars has been instrumental in revealing key influences of the environment on flying migrants. Radars enable the simultaneous tracking of many individuals of almost all sizes within the radar range during day and night, and under low visibility conditions. We review how atmospheric conditions, geographic features and human development affect the behavior of migrating insects and birds as recorded by radars. We focus on flight initiation and termination, as well as in‐flight behavior that includes changes in animal flight direction, speed and altitude. We have identified several similarities and differences in the behavioral responses of aerial migrants including an overlooked similarity in the use of thermal updrafts by very small (e.g. aphids) and very large (e.g. vultures) migrants. We propose that many aerial migrants modulate their migratory flights in relation to the interaction between atmospheric conditions and geographic features. For example, aerial migrants that encounter crosswind may terminate their flight or continue their migration and may also drift or compensate for lateral displacement depending on their position (over land, near the coast or over sea). We propose several promising directions for future research, including the development and application of algorithms for tracking insects, bats and large aggregations of animals using weather radars. Additionally, an important contribution will be the spatial expansion of aeroecological radar studies to Africa, most of Asia and South America where no such studies have been undertaken. Quantifying the role of migrants in ecosystems and specifically estimating the number of departing birds from stopover sites using low‐elevation radar scans is important for quantifying migrant–habitat relationships. This information, together with estimates of population demographics and migrant abundance, can help resolve the long‐term dynamics of migrant populations facing large‐scale environmental changes.
Urban environments cover vast areas with a high density of humans and their dogs and cats causing problems for exploitation of new resources by wild animals. Such resources facilitate colonization by individuals with a high level of neophilia predicting that urban animals should show more neophilia than rural conspecifics. We provided bird-feeders across urban environments in 14 Polish cities and matched nearby rural habitats, testing whether the presence of a novel item (a brightly coloured green object made out of gum with a tuft of hair) differentially delayed arrival at feeders in rural compared to urban habitats. The presence of a novel object reduced the number of great tits Parus major, but also the total number of all species of birds although differentially so in urban compared to rural areas. That was the case independent of the potentially confounding effects of temperature, population density of birds, and the abundance of cats, dogs and pedestrians. The number of great tits and the total number of birds attending feeders increased in urban compared to rural areas independent of local population density of birds. This implies that urban birds have high levels of neophilia allowing them to readily exploit unpredictable resources in urban environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.