Background and Objectives:
Current developments in electroencephalography (EEG) foster medical and nonmedical applications outside the hospitals. For example, continuous monitoring of mental and cognitive states can contribute to avoid critical and potentially dangerous situations in daily life. An important prerequisite for successful EEG at home is a real-time classification of mental states. In this article, we compare different machine learning algorithms for the classification of eye states based on EEG recordings.
Materials and Methods:
We tested 23 machine learning algorithms from the Waikato Environment for Knowledge Analysis toolkit. Each classifier was analyzed on four different datasets, since two separate approaches - called sample-wise and segment-wise - in combination with raw and filtered data were applied. These datasets were recorded for 27 volunteers. The different approaches are compared in terms of accuracy, complexity, training time, and classification time.
Results:
Ten out of 23 classifiers fulfilled the determined requirements of high classification accuracy and short time of classification and can be denoted as applicable for real-time EEG eye state classification.
Conclusions:
We found that it is possible to predict eye states using EEG recordings with an accuracy from about 96% to over 99% in a real-time system. On the other hand, we found no best, universal method of classifying EEG eye states in all volunteers. Therefore, we conclude that the best algorithm should be chosen individually, using the optimal classification accuracy in combination with time of classification as the criterion.
We propose a novel automatic segmentation algorithm that separates the components of human skin cells from the rest of the tissue in fluorescence data of three-dimensional scans using non-invasive multiphoton tomography. The algorithm encompasses a multi-stage merging on preprocessed superpixel images to ensure independence from a single empirical global threshold. This leads to a high robustness of the segmentation considering the depth-dependent data characteristics, which include variable contrasts and cell sizes. The subsequent classification of cell cytoplasm and nuclei are based on a cell model described by a set of four features. Two novel features, a relationship between outer cell and inner nucleus (OCIN) and a stability index, were derived. The OCIN feature describes the topology of the model, while the stability index indicates segment quality in the multi-stage merging process. These two new features, combined with the local gradient magnitude and compactness, are used for the model-based fuzzy evaluation of the cell segments. We exemplify our approach on an image stack with 200 × 200 × 100 μm3, including the skin layers of the stratum spinosum and the stratum basale of a healthy volunteer. Our image processing pipeline contributes to the fully automated classification of human skin cells in multiphoton data and provides a basis for the detection of skin cancer using non-invasive optical biopsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.