Abstract. The structure of cones of positive and k-positive maps acting on a finite-dimensional Hilbert space is investigated. Special emphasis is given to their duality relations to the sets of superpositive and k-superpositive maps. We characterize k-positive and k-superpositive maps with regard to their properties under taking compositions. A number of results obtained for maps are also rephrased for the corresponding cones of block positive, k-block positive, separable and k-separable operators, due to the Jamio lkowski-Choi isomorphism. Generalizations to a situation where no such simple isomorphism is available are also made, employing the idea of mapping cones. As a side result to our discussion, we show that extreme entanglement witnesses, which are optimal, should be of special interest in entanglement studies.
Abstract. We discuss the subject of Unextendible Product Bases with the orthogonality condition dropped and we prove that the lowest rank non-separable positive-partial-transpose states, i.e. states of rank 4 in 3 × 3 systems are always locally equivalent to a projection onto the orthogonal complement of a linear subspace spanned by an orthogonal Unextendible Product Basis. The product vectors in the kernels of the states belong to a non-zero measure subset of all general Unextendible Product Bases, nevertheless they can always be locally transformed to the orthogonal form. This fully confirms surprising numerical results recently reported by Leinaas et al. Parts of the paper rely heavily on the use of Bezout's Theorem from algebraic geometry.
Numerical range of a Hermitian operator X is defined as the set of all possible expectation values of this observable among a normalized quantum state. We analyze a modification of this definition in which the expectation value is taken among a certain subset of the set of all quantum states. One considers for instance the set of real states, the set of product states, separable states, or the set of maximally entangled states. We show exemplary applications of these algebraic tools in the theory of quantum information: analysis of k-positive maps and entanglement witnesses, as well as study of the minimal output entropy of a quantum channel.Product numerical range of a unitary operator is used to solve the problem of local distinguishability of a family of two unitary gates.
We study operators acting on a tensor product Hilbert space and investigate their product numerical range, product numerical radius and separable numerical range. Concrete bounds for the product numerical range for Hermitian operators are derived. Product numerical range of a non-Hermitian operator forms a subset of the standard numerical range containing the barycenter of the spectrum. While the latter set is convex, the product range needs not to be convex nor simply connected. The product numerical range of a tensor product is equal to the Minkowski product of numerical ranges of individual factors.Comment: 17 pages, 4 figures. Original preprint "Local numerical range: a versatile tool in the theory of quantum information" [arXiv:0905.3646v1] was broadened and split into two papers: "Restricted numerical range: a versatile tool in the theory of quantum information", and "Product numerical range in a space with tensor product structure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.