This paper presents the characteristic of 316L steel turning obtained by 3D printing. The analysis of the influence of turning data on the components of the total cutting force, surface roughness and the maximum temperature values in the cutting zone are presented. The form of chips obtained in the machining process was also analyzed. Statistical analysis of the test results was developed using the Taguchi method.
This article presents an attempt to solve the problem of the formation of burrs and drilling caps in the process of drilling in difficult-to-cut materials, specifically in the titanium alloy Ti-6Al-4V. In order to eliminate these phenomena, a chamfer of specific length and angle was made on FANAR drill’s margin. Taguchi and ANOVA methods were used to plan and analyze the experiment aimed at determining the optimal geometry of the modified drill. Chamfer with a length of 2 mm and an angle of 10° was selected. In the next stage of research, the values of cutting forces and burr heights obtained during drilling with the original and modified drill were compared for three different feed rate values. It turned out that the introduced changes significantly reduced both the axial cutting force (22–23%) and the height of burrs (10–22%) and caused the complete elimination of the presence of drilling caps. Additionally, a positive correlation between the cutting force and the burr size was found.
The paper presents an experimental-analytical method for determination of temperature in the cutting zone during the orthogonal turning of GRADE 2 titanium alloy. A cutting insert with a complex rake geometry was used in the experiments. The experimental part of the method involved orthogonal turning tests during which the cutting forces and the chip forming process were recorded for two different insert rake faces. The analytical part used a relationship between the cutting forces and the temperature in the Primary Shear Zone (PSZ) and the Secondary Shear Zone (SSZ), which are described by the Johnson-Cook (J-C) constitutive model and the chip forming model according to the Oxley’s theory. The temperature in the PSZ and SSZ was determined by finding the minimum difference between the shear flow stress determined in the J-C model and the Oxley’s model. Finally, using the described method, the relationship between the temperature in the PSZ and SSZ and the rake face geometry was determined. In addition, the temperature in the cutting zone was measured during the experimental tests with the use of a thermovision camera. The temperature distribution results determined experimentally with a thermovision camera were compared with the results obtained with the described method.
The paper presents research of titanium alloy (Ti6Al4V) and pure titanium turning with sintered carbide tool of rounded shape. Finish machining was performed on the work piece in the form of a fragment of ball. Several roughness parameters were chosen for the purpose to the surface finish analysis. Results were compared for the pure titanium and its alloy. The test stand for research was consisted of the precise CNC lathe with a special devices, like force dynamometer, roughness and roundness measurement systems. In the work a special attention was paid on the influence of the cutting data (cutting speed v c , feed f and depth of cut a p ) on the surface quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.