ObjectiveDespite the common use of non-fasting measurements for lipid profile in children it remains unclear as to the extent non-fasting conditions have on laboratory results of lipids measurements. We aimed to assess the impact of non-fasting lipid profile on the occurrence of dyslipidemia in children.Materials and methodsBasic lipid profile including: total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG), as well as small, dense-LDL-C (sd-LDL-C), apolipoprotein AI (ApoAI), apolipoprotein B (ApoB) and lipoprotein(a) [Lp(a)], were measured in 289 presumably healthy children aged 9–11 in both fasting and non-fasting condition. The clinical impact of non-fasting lipid profile was evaluated individually for each child with estimation of false positive (FP) and false negative (FN) results.ResultsThe highest percentage of FP results in non-fasting condition was observed for TG (42.3%) being significantly higher when compared to FN results (p = 0.003). In contrast, the highest percentage of FN results in a non-fasting state were shown for LDL-C (14.3%), but the difference was statistically insignificant when compared to FP results. When comparing fasting and non-fasting lipid profile a number of significant differences was shown for: TG (p<0.001), HDL-C (p = 0.002) LDL-C (p<0.001) and ApoAI (p<0.001), respectively. The occurrence of dyslipidemia, recognized on the basis of non-fasting lipids was significantly higher (p = 0.010) when compared to fasting lipid profile.ConclusionsA higher occurrence of dyslipidemia, based on the measurement of non-fasting lipids in children, is suggestive of possible disorders in lipid metabolism. However, accurate identification of dyslipidemia by assessment of non-fasting lipids requires the establishment of appropriate cut-off values for children.
Background: The aim of this study was to assess the relationship between vitamin D status and the prevalence of dyslipidemia and impaired fasting glucose (IFG) in children. Methods and Summary: 284 children (150 boys and 134 girls) aged 9–11 were included in the study. Children with deficient 25(OH)D (25-hydroxycholecalciferol) levels ≤20 ng/mL (50 nmol/L) were characterized by a more frequent occurrence of impaired fasting glucose (IFG) (Odd ratios (OR) = 1.966, 95% confidence interval (CI): 1.055–3.663; p = 0.033) when compared to children with 25(OH)D >20 ng/mL. Serum 25(OH)D with concentration lower by 1 ng/mL (2.5 nmol/L) was linked to higher fasting glucose (by 0.25 mg/dL, 0.013 mmol/L; p = 0.017), higher total cholesterol (TC) by almost 1 mg/dL (0.96 mg/dL, 0.25 mmol/L; p = 0.006) and higher high-density lipoprotein cholesterol (HDL-C) (by 0.57 mg/dL, 0.015 mmol/L; p < 0.001). Conclusion: 25(OH)D deficiency may negatively affect fasting glucose and total cholesterol concentration in children aged 9–11. Vitamin D-deficient children are twice as likely to develop prediabetes as reflected by impaired fasting glucose when compared to those with a 25(OH)D level above 20 ng/mL (50 nmol/L).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.