The paper covers the latest developments in research on the utilitarian properties of algal extracts. Their application as the components of pharmaceuticals, feeds for animals and fertilizers was discussed. The classes of various biologically active compounds were characterized in terms of their role and the mechanism of action in an organism of human, animal and plant. Recently, many papers have been published which discuss the methods of manufacture and the composition of algal extracts. The general conclusion is that the composition of extracts strongly depends on the raw material (geographical location of harvested algae and algal species) as well as on the extraction method. The biologically active compounds which are transferred from the biomass of algae to the liquid phase include polysaccharides, proteins, polyunsaturated fatty acids, pigments, polyphenols, minerals, plant growth hormones and other. They have well documented beneficial effect on humans, animals and plants, mainly by protection of an organism from biotic and abiotic stress (antibacterial activity, scavenging of free radicals, host defense activity etc.) and can be valuable components of pharmaceuticals, feed additives and fertilizers.
We explored two methods for obtaining aqueous extracts: boiling and soaking of Baltic seaweeds (EB and ES, resp.). Algal extracts were characterized in terms of polyphenols, micro- and macroelements, lipids content, and antibacterial properties. The utilitarian properties were examined in the germination tests on Lepidium sativum for three extract dilutions (0.5, 2.5, and 10%). It was found that the extracts were similar in micro- and macroelement concentrations. Water was proved to be a good solvent to extract phenolic compounds. The algal extract produced by soaking biomass did not show inhibitory effect on Escherichia coli and Staphylococcus aureus. Only the boiled extract had an inhibitory activity against E. coli. Germination tests revealed a positive influence of the bioproducts on the cultivated plants. In the group treated with 10% EB, plants were 13% longer than in the control group; the content of elements B, Mo, Zn, and Na in the group treated with 10% ES was higher by 76%, 48%, 31%, and 59% than in the control group, respectively; the content of chlorophyll was 2.5 times higher in 0.5% ES than in the control group. Extracts showed the slight impact on the morphology of plants.
Microwave Assisted Extraction (MAE) was used to obtain aqueous extracts of Baltic seaweeds. Three different temperatures: 25, 40, 60°C were examined. Algal extracts were characterized in terms of polyphenols, microand macroelements, lipids content and antibacterial properties. This is the first study that examines the effect of algal extract obtained by MAE in plant cultivation. The utilitarian properties were checked in the germination tests on Lepidium sativum for three dilutions of extract (0.5, 2.5 and 10%). Results showed that the content of polyphenols in extracts decreased with temperature, whereas the content of micro-and macroalements increased with temperature. The aqueous extracts did not contain fatty acids and did not show inhibitory effect on Escherichia coli and Staphylococcus aureus. Germination tests showed that plants in the experimental groups with an optimal concentration of extract had a higher height, weight, chlorophyll and micro-and macroelement content than plants in the control group. The algal extracts did not significantly influence the morphology of plants as shown in SEM pictures. Results show that algal extracts obtained by MAE have the highest potential applied in agriculture as biostimulants.
In the present paper, new environmental-friendly fertilizer components were produced in biosorption process by the enrichment of the biomass with zinc, essential in plant cultivation. The obtained new preparations can be used as controlled release micronutrient fertilizers because microelements are bound to the functional groups present in the cell wall structures of the biomass. It is assumed that new fertilizing materials will be characterized by higher bioavailability, gradual release of micronutrients required by plants, and lower leaching to groundwater. The biological origin of the material used in plant fertilization results in the elimination of toxic effect towards plants and groundwater mainly caused by low biodegradability of fertilizers. Utilitarian properties of new formulations enable to reduce negative implications of fertilizers for environmental quality and influence ecological health. In this work, the utilitarian properties of materials such as peat, bark, seaweeds, seaweed post-extraction residues, and spent mushroom substrate enriched via biosorption with Zn(II) ions were examined in germination tests on Lepidium sativum. Obtained results were compared with conventional fertilizers—inorganic salt and chelate. It was shown that zinc fertilization led to biofortification of plant in these micronutrients. Moreover, the mass of plants fertilized with zinc was higher than in the control group.
The present work reports studies on biofortification of milk and cheese with microelements. The diet of goats was supplemented with soya-based preparations with Cu(II), Fe(II), Zn(II) and Mn(II), produced by biosorption, instead of mineral salts. In innovative preparations, soya was the biological carrier of microelements. The utilitarian properties of the new preparations were tested in two groups (8 goats in each): experimental and control. The concentration of supplemented microelements was monitored in milk during the experiment. The collected milk was then used to produce cheese by enzymatic and acidic coagulation method. The effect of milk and cheese biofortification in microelements was confirmed. In milk, the level of the following microelements was higher than in the control: Cu(II) - 8.2 %, Mn(II) - 29.2 %, Zn(II) - 14.6 %. In cheese the content of Zn(II) obtained in enzymatic (19.8 %) and in acidic (120 %) coagulation was higher when compared to the control group. By using bio-preparations with microelements it was possible to produce new generation of functional food biofortified with microelements, by agronomic, and thus sustainable and ethically acceptable way. Biofortified milk and cheese can be used as designer milk to prevent from micronutrient deficiencies. Graphical Abstractᅟ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.