Hyperspectral imaging has become a mature technology which brings exciting possibilities in various domains, including satellite image analysis. However, the high dimensionality and volume of such imagery is a serious problem which needs to be faced in Earth Observation applications, where efficient acquisition, transfer and storage of hyperspectral images are key factors. To reduce the time (and ultimately cost) of transferring hyperspectral data from a satellite back to Earth, various band selection algorithms have been proposed. They are built upon the observation that for a vast number of applications only a subset of all bands convey the important information about the underlying material, hence we can safely decrease the data dimensionality without deteriorating the performance of hyperspectral classification and segmentation techniques. In this paper, we introduce a novel algorithm for hyperspectral band selection that couples new attention-based convolutional neural networks used to weight the bands according to their importance with an anomaly detection technique which is exploited for selecting the most important bands. The proposed attention-based approach is data-driven, re-uses convolutional activations at different depths of a deep architecture, identifying the most informative regions of the spectrum. Also, it is modular, easy to implement, seamlessly applicable to any convolutional network, and can be trained end-to-end using gradient descent. Our rigorous experiments, performed over benchmark sets and backed up with statistical tests, showed that the deep models equipped with the attention mechanism are competitive with the stateof-the-art band selection techniques and can work orders or magnitude faster, they deliver high-quality classification, and consistently identify significant bands in the training data, permitting the creation of refined and extremely compact sets that retain the most meaningful features. Also, the attention modules do not deteriorate the classification abilities, and slow down neither training nor inference of the deep models.
Although hyperspectral images capture very detailed information about the scanned objects, their efficient analysis, transfer, and storage are still important practical challenges due to their large volume. Classifying and segmenting such imagery are the pivotal steps in virtually all applications, hence developing new techniques for these tasks is a vital research area. Here, deep learning has established the current state of the art. However, deploying large-capacity deep models on-board an Earth observation satellite poses additional technological challenges concerned with their memory footprints, energy consumption requirements, and robustness against varying-quality image data, with the last problem being under-researched. In this paper, we tackle this issue, and propose a set of simulation scenarios that reflect a range of atmospheric conditions and noise contamination that may ultimately happen on-board an imaging satellite. We verify their impact on the generalization capabilities of spectral and spectral-spatial convolutional neural networks for hyperspectral image segmentation. Our experimental analysis, coupled with various visualizations, sheds more light on the robustness of the deep models and indicate that specific noise distributions can significantly deteriorate their performance. Additionally, we show that simulating atmospheric conditions is key to obtaining the learners that generalize well over image data acquired in different imaging settings.
Hyperspectral images capture very detailed information about scanned objects and, hence, can be used to uncover various characteristics of the materials present in the analyzed scene. However, such image data are difficult to transfer due to their large volume, and generating new ground-truth datasets that could be utilized to train supervised learners is costly, time-consuming, very user-dependent, and often infeasible in practice. The research efforts have been focusing on developing algorithms for hyperspectral data classification and unmixing, which are two main tasks in the analysis chain of such imagery. Although in both of them, the deep learning techniques have bloomed as an extremely effective tool, designing the deep models that generalize well over the unseen data is a serious practical challenge in emerging applications. In this paper, we introduce the deep ensembles benefiting from different architectural advances of convolutional base models and suggest a new approach towards aggregating the outputs of base learners using a supervised fuser. Furthermore, we propose a model augmentation technique that allows us to synthesize new deep networks based on the original one by injecting Gaussian noise into the model’s weights. The experiments, performed for both hyperspectral data classification and unmixing, show that our deep ensembles outperform base spectral and spectral-spatial deep models and classical ensembles employing voting and averaging as a fusing scheme in both hyperspectral image analysis tasks.
Improving agricultural practices through exploiting the recent imaging and machine learning advancements plays a key role nowadays to ensure sustainable food security, and to help us deal with the climate change. Quantifying soil parameters can lead to optimizing the fertilization process but it is cumbersome, time-consuming and difficult to scale, as it requires performing in-situ soil measurements that are later analyzed in the laboratory settings. In the HYPER-VIEW challenge, we aim at automating the soil analysis thanks to the utilization of hyperspectral images that capture very detailed information about the scanned objects in hundreds of contiguous hyperspectral bands. Such imagery can be effectively analyzed using an array of classical and deep machine learning approaches. Also, the AI techniques can be deployed on-board the imaging satellitesit opens new doors related to the scalability of the solution. The winners of the challenge will be offered a unique opportunity to run their proposed solution in orbit, on-board the Intuition-1 satellite, equipped with a hyperspectral imager and on-board AI capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.