BackgroundSchizencephaly is an uncommon congenital disorder of cerebral cortical development. The defect is characterized by the presence of a cleft in the brain extending from the surface of the pia mater to the cerebral ventricles. The margins of the cleft are lined with heterotropic, dysplastic gray matter. The causes of schizencephaly are heterogeneous and can include teratogens, prenatal infection, maternal trauma, or EMX2 mutations.MethodIn the present paper, the authors described difficulties in employing diagnostic imaging in differentiating between type II (open-lip) schizencephaly and much more common intracranial fluid spaces of a different origin (arachnoid cysts and hydrocephalus).ResultIn all the three cases, the treatment consisted in implantation of a shunt system; nevertheless, it should be emphasized that a surgical intervention in the third presented case (type II schizencephaly) aimed at relieving the symptoms of intracranial hypertension—a directly life-threatening condition—since shunting is not a method of treating schizencephaly itself.ConclusionsAlthough proper interpretation of the character of intracranial fluid spaces is of significance for further therapeutic management, yet, the key decision as to the surgical intervention is made based on clinical presentation, predominantly on symptoms of intracranial hypertension.
Background The prevalence of autoimmune thyroiditis (AIT) and papillary thyroid carcinoma (PTC) is rising in children and adolescents, and the coincidence of AIT and PTC is as high as 6.3–43%.ObjectiveTo investigate the ultrasound manifestation of AIT in relation to PTC development in paediatric patients.Patients179 paediatric patients (133 females), mean (SD) age: 13.9 (3.03) years diagnosed with AIT and referred for ultrasound evaluation. Eight patients were diagnosed with PTC (6 females). MethodsRetrospective analysis of thyroid ultrasound scans of patients diagnosed with AIT. Thyroid and autoimmune status was assessed based on TSH, fT4, fT3 and increased aTPO and/or aTG and/or TRAB levels. In patients with PTC, total thyroidectomy was performed.ResultsAnalysis of thyroid US scans revealed that the following five ultrasound variants of AIT were observed in 179 patients: the most common in 35.2%—diffuse thyroiditis with hypoechogenic background and normoechogenic parenchyma, in 30.2%—diffuse thyroiditis with irregular background, in 18.9% nodular variant with normoechogenic background, in 11.7%—micronodulations and in 3.9%—diffuse hypoechogenic background. Eight cases of PTC were diagnosed in nodular variant of AIT with normoechogenic irregular background.ConclusionPatients with AIT and nodular variant with normoechogenic irregular background of the thyroid gland on US scans are in the risk group of developing PTC and should be followed up with regular neck US assessment.
Purpose To present the outcomes of ultrasound (US) follow-ups in children with autoimmune thyroid disease who did not have a thyroid nodule on admission but developed papillary thyroid carcinoma (PTC) and to characterize the parenchymal changes in the thyroid gland prior to the development of PTC. Methods A retrospective thyroid US scan review of 327 patients diagnosed with AIT was performed. Forty patients (40/327, 12.2%) presented nodular AIT variant with a normoechogenic background. Eleven patients (11/327, 3.4%, 11/40, 27.5%) presenting this variant were diagnosed with PTC (nine females-mean age 15.3 years; two males aged 11 and 13 years). In five of 11 patients, the suspicious nodule that was later confirmed to be PTC was detected on the initial US at presentation. For the remaining six females (6/11) who developed PTC during the follow-up, we retrospectively analysed their US thyroid scans and these patients were selected for analysis in this study. Results On admission, the US evaluation revealed an enlarged normoechogenic thyroid gland in three patients and a hypoechogenic thyroid gland with fibrosis as indicated by irregular, chaotic hyperechogenic layers in three patients. No thyroid nodules were identified. Ultrasound monitoring revealed increasing echogenicity of the thyroid parenchyma during the follow-up. PTC developed in a mean time of 4.6 years (1 9/12-7 4/12 years) since referral to the outpatient thyroid clinic and 2.9 years (6/12-6 9/12) since the last nodule-free US thyroid scan. Conclusions Sonographic follow-up assessments warrant further exploration as a strategy to determine PTC susceptibility in the paediatric population.
The aim of the following case report is to provide a description of the coexistence of two independent tumors in a child. A 9-month-old male was referred to Department of Pediatric Oncology and Hematology with hepatic tumor present on ultrasound imaging and symptoms of enlarged abdominal circumference. Physical examination revealed a palpable epigastric mass and the imaging techniques showed a tumor of the left hepatic lobe measuring 11 × 6.5 × 8.9 cm with pancreas infiltration, distant metastases in both lungs and abnormal lesion in the left adrenal gland. Basing on histopathological examination, after a core-needle biopsy, hepatoblastoma (HBL) (mixed epithelial-mesenchymal subtype) was diagnosed. The α-fetoprotein level was 112 993 ng/ml. Elevated values of normetanephrine, 3-methoxytyramine as well as neuron-specific enolase were observed. Due to the clinical picture and diagnosis, the patient was qualified to preoperative chemotherapy according to the SIOPEL-3 protocol, followed by SIOPEL-4 protocol for the high-risk patients. After undergoing preoperative chemotherapy, imaging tests revealed regression of hepatic tumor and no focal pulmonary masses, while regression of adrenal gland mass was not completed. The patient was qualified for left hemihepatectomy with left adrenalectomy. Histopathological examination of liver specimen confirmed the HBL diagnosis. However, in left adrenal gland and paraaortic lymph nodes the residual neuroblastoma (NBL) cells were detected. Whole exome sequencing (WES) was utilized to identify disease-associated germline mutations. WES revealed a novel germline insertion variant in TWIST1 (p.Gly86dup), along with the potentially pathogenic non-synonymous variants in NF1 (p.Val2511Ile), RAF1 (p.Leu445Arg), and WHSC1 (p.Ser4Asn) genes. Currently, 6 months after completion of treatment according to the SIOPEL-4 protocol, the patient is in good general condition, without any signs, and symptoms of relapse of both neoplasms. The coexistence of two different primary childhood malignancies is rarely seen. So far, only one case of synchronous HBL and NBL has been reported. However, for the first time therapeutic process was successful. A specific signature of rare germline mutations can be proposed as a predisposing factor to synchronous HBL and NBL occurrence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.