We consider the NP Hard problems of online Bin Covering and Packing while requiring that larger (or longer, in the one dimensional case) items be placed at the bottom of the bins, below smaller (or shorter) items-we call such a version, the LIB version of problems. Bin sizes can be uniform or variable. We look at computational studies for both the Best Fit and Harmonic Fit algorithms for uniform sized bin covering. The Best Fit heuristic for this version of the problem is introduced here. The approximation ratios obtained were well within the theoretical upper bounds. For variable sized bin covering, a more thorough analysis revealed definite trends in the maximum and average approximation ratios. Finally, we prove that for online LIB bin packing with uniform size bins, no heuristic can guarantee an approximation ratio better than 1.76 under the online model considered.
Deterministic long run average problems of optimal control are "asymptotically equivalent" to infinite-dimensional linear programming problems (LPP) and the latter are approximated by finite dimensional LPP. The solutions of this finite dimensional LPP can be used for numerical analysis of periodic optimization problems. In the present paper we establish the convergence of controls constructed on the basis of the solution of the finite dimensional LPP to the optimal control of a periodic optimization problem. Results are illustrated with a numerical example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.