This paper presents Serval, a framework for developing automated verifiers for systems software. Serval provides an extensible infrastructure for creating verifiers by lifting interpreters under symbolic evaluation, and a systematic approach to identifying and repairing verification performance bottlenecks using symbolic profiling and optimizations. Using Serval, we build automated verifiers for the RISC-V, x86-32, LLVM, and BPF instruction sets. We report our experience of retrofitting CertiKOS and Komodo, two systems previously verified using Coq and Dafny, respectively, for automated verification using Serval, and discuss trade-offs of different verification methodologies. In addition, we apply Serval to the Keystone security monitor and the BPF compilers in the Linux kernel, and uncover 18 new bugs through verification, all confirmed and fixed by developers.
Modern operating systems allow user-space applications to submit code for kernel execution through the use of in-kernel domain specific languages (DSLs). Applications use these DSLs to customize system policies and add new functionality. For performance, the kernel executes them via just-in-time (JIT) compilation. The correctness of these JITs is crucial for the security of the kernel: bugs in in-kernel JITs have led to numerous critical issues and patches. This paper presents JitSynth, the first tool for synthesizing verified JITs for in-kernel DSLs. JitSynth takes as input interpreters for the source DSL and the target instruction set architecture. Given these interpreters, and a mapping from source to target states, JitSynth synthesizes a verified JIT compiler from the source to the target. Our key idea is to formulate this synthesis problem as one of synthesizing a perinstruction compiler for abstract register machines. Our core technical contribution is a new compiler metasketch that enables JitSynth to efficiently explore the resulting synthesis search space. To evaluate Jit-Synth, we use it to synthesize a JIT from eBPF to RISC-V and compare to a recently developed Linux JIT. The synthesized JIT avoids all known bugs in the Linux JIT, with an average slowdown of 1.82× in the performance of the generated code. We also use JitSynth to synthesize JITs for two additional source-target pairs. The results show that JitSynth offers a promising new way to develop verified JITs for in-kernel DSLs.
This paper describes an approach to designing, implementing, and formally verifying the functional correctness of an OS kernel, named Hyperkernel, with a high degree of proof automation and low proof burden. We base the design of Hyperkernel's interface on xv6, a Unix-like teaching operating system. Hyperkernel introduces three key ideas to achieve proof automation: it finitizes the kernel interface to avoid unbounded loops or recursion; it separates kernel and user address spaces to simplify reasoning about virtual memory; and it performs verification at the LLVM intermediate representation level to avoid modeling complicated C semantics. We have verified the implementation of Hyperkernel with the Z3 SMT solver, checking a total of 50 system calls and other trap handlers. Experience shows that Hyperkernel can avoid bugs similar to those found in xv6, and that the verification of Hyperkernel can be achieved with a low proof burden.
Reusable symbolic evaluators are a key building block of solver-aided verification and synthesis tools. A reusable evaluator reduces the semantics of all paths in a program to logical constraints, and a client tool uses these constraints to formulate a satisfiability query that is discharged with SAT or SMT solvers. The correctness of the evaluator is critical to the soundness of the tool and the domain properties it aims to guarantee. Yet so far, the trust in these evaluators has been based on an ad-hoc foundation of testing and manual reasoning. This paper presents the first formal framework for reasoning about the behavior of reusable symbolic evaluators. We develop a new symbolic semantics for these evaluators that incorporates state merging. Symbolic evaluators use state merging to avoid path explosion and generate compact encodings. To accommodate a wide range of implementations, our semantics is parameterized by a symbolic factory, which abstracts away the details of merging and creation of symbolic values. The semantics targets a rich language that extends Core Scheme with assumptions and assertions, and thus supports branching, loops, and (first-class) procedures. The semantics is designed to support reusability, by guaranteeing two key properties: legality of the generated symbolic states, and the reducibility of symbolic evaluation to concrete evaluation. Legality makes it simpler for client tools to formulate queries, and reducibility enables testing of client tools on concrete inputs. We use the Lean theorem prover to mechanize our symbolic semantics, prove that it is sound and complete with respect to the concrete semantics, and prove that it guarantees legality and reducibility. To demonstrate the generality of our semantics, we develop Leanette, a reference evaluator written in Lean, and Rosette 4, an optimized evaluator written in Racket. We prove Leanette correct with respect to the semantics, and validate Rosette 4 against Leanette via solver-aided differential testing. To demonstrate the practicality of our approach, we port 16 published verification and synthesis tools from Rosette 3 to Rosette 4. Rosette 3 is an existing reusable evaluator that implements the classic merging semantics, adopted from bounded model checking. Rosette 4 replaces the semantic core of Rosette 3 but keeps its optimized symbolic factory. Our results show that Rosette 4 matches the performance of Rosette 3 across a wide range of benchmarks, while providing a cleaner interface that simplifies the implementation of client tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.