Macrophages and neutrophils play important roles during the innate immune response, phagocytosing invading microbes and delivering antimicrobial compounds to the site of injury. Functional analyses of the cellular innate immune response in zebrafish infection/ inflammation models have been aided by transgenic lines with fluorophore-marked neutrophils. However, it has not been possible to study macrophage behaviors and neutrophil/macrophage interactions in vivo directly because there has been no macrophage-only reporter line. To remove this roadblock, a macrophagespecific marker was identified (mpeg1) and its promoter used in mpeg1-driven transgenes. mpeg1-driven transgenes are expressed in macrophage-lineage cells that do not express neutrophil-marking transgenes. Using these lines, the different dynamic behaviors of neutrophils and macrophages after wounding were compared side-by-side in compound transgenics. Macrophage/neutrophil interactions, such as phagocytosis of senescent neutrophils, were readily observed in real time. These zebrafish transgenes provide a new resource that will contribute to the fields of inflammation, infection, and leukocyte biology. (Blood. 2011;117(4): e49-e56)
High-performance sensors for reactive oxygen species are instrumental to monitor dynamic events in cells and organisms. Here, we present HyPer-3, a genetically encoded fluorescent indicator for intracellular H 2 O 2 exhibiting improved performance with respect to response time and speed. HyPer-3 has an expanded dynamic range compared to HyPer and significantly faster oxidation/reduction dynamics compared to HyPer-2. We demonstrate this performance by in vivo imaging of tissue-scale H 2 O 2 gradients in zebrafish larvae. Moreover, HyPer-3 was successfully employed for singlewavelength fluorescent lifetime imaging of H 2 O 2 levels both in vitro and in vivo. R eactive oxygen species (ROS) are products of incomplete molecular oxygen reduction. Among ROS, the superoxide anion radical O 2 * − and hydrogen peroxide H 2 O 2 are the most investigated in biology because they are produced by a wide range of enzymes, specifically or as side-products, and have a number of well-known biological effects.1 For a long time, ROS were viewed mostly in a context of their nonspecific damaging action on DNA, lipids, and proteins.2 This point of view was strongly supported by the discovery of antioxidant enzymes decomposing ROS and by the fact that phagocytes produce ROS when killing pathogens.1,3 Later, the ROS toxicity dogma was challenged after specialized O 2 * − and H 2 O 2 producing enzymes were found to be expressed in most cell types.4,5 This fact gave a new impulse to ROS investigations but, now in the context of their regulatory function, as signaling molecules. It was shown that H 2 O 2 acted as a second messenger selectively oxidizing those cysteine residues in proteins that were ionized (deprotonated) at physiological pH values. 6,7 Initially, protein tyrosine phosphatases were shown to be reversibly inactivated by H 2 O 2 . 8,9 Since then, the list of known redox regulated proteins grew exponentially. During the last years, proteomics and computational approaches added a lot of new members to the list.
We demonstrate that in zebrafish, the microRNA miR-451 plays a crucial role in promoting erythroid maturation, in part via its target transcript gata2. Zebrafish miR-144 and miR-451 are processed from a single precursor transcript selectively expressed in erythrocytes. In contrast to other hematopoietic mutants, the ze-brafish mutant meunier (mnr) showed intact erythroid specification but diminished miR-144/451 expression. Although erythropoiesis initiated normally in mnr, erythrocyte maturation was morphologically retarded. Morpholino knockdown of miR-451 increased erythrocyte immatu-rity in wild-type embryos, and miR-451 RNA duplexes partially rescued erythroid maturation in mnr, demonstrating a requirement and role for miR-451 in erythro-cyte maturation. mnr provided a selectively miR-144/451-deficient background, facilitating studies to discern miRNA function and validate candidate targets. Among computer-predicted miR-451 targets potentially mediating these biologic effects, the pro-stem cell transcription factor gata2 was an attractive candidate. In vivo reporter assays validated the predicted miR-451/gata2-3UTR interaction, gata2 down-regulation was delayed in miR-451-knockdown and mnr embryos, and gata2 knockdown partially restored erythroid maturation in mnr, collectively confirming gata2 down-regulation as piv-otal for miR-451-driven erythroid matura-tion. These studies define a new genetic pathway promoting erythroid maturation (mnr/miR-451/gata2) and provide a rare example of partial rescue of a mutant phenotype solely by miRNA overexpres-sion. (Blood. 2009;113:1794-1804)
The Menkes protein (MNK; ATP7A) functions as a transmembrane copper-translocating P-type ATPase and plays a vital role in systemic copper absorption in the gut and copper reabsorption in the kidney. Polarized epithelial cells such as Madin-Darby canine kidney (MDCK) cells are a physiologically relevant model for systemic copper absorption and reabsorption in vivo. In this study, cultured MDCK cells were used to characterize MNK trafficking and enabled the identification of signaling motifs required to target the protein to specific membranes. Using confocal laser scanning microscopy and surface biotinylation we demonstrate that MNK relocalizes from the Golgi to the basolateral (BL) membrane under elevated copper conditions. As previously shown in nonpolarized cells, the metal binding sites in the NH2-terminal domain of MNK were found to be required for copper-regulated trafficking from the Golgi to the plasma membrane. These data provide molecular evidence that is consistent with the presumed role of this protein in systemic copper absorption in the gut and reabsorption in the kidney. Using site-directed mutagenesis, we identified a dileucine motif proximal to the COOH terminus of MNK that was critical for correctly targeting the protein to the BL membrane and a putative PDZ target motif that was required for localization at the BL membrane in elevated copper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.