Summary
Alzheimer’s Disease (AD) is complicated by pro-oxidant intraneuronal Fe2+ elevation as well as extracellular Zn2+ accumulation within amyloid plaque. We found that the AD β-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn2+. Like ceruloplasmin, APP catalytically oxidizes Fe2+, loads Fe3+ into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue. Ablation of APP in HEK293T cells and primary neurons induces marked iron retention, whereas increasing APP695 promotes iron export. Unlike normal mice, APP−/− mice are vulnerable to dietary iron exposure, which causes Fe2+ accumulation and oxidative stress in cortical neurons. Paralleling iron accumulation, APP ferroxidase activity in AD post-mortem neocortex is inhibited by endogenous Zn2+, which we demonstrate can originate from Zn2+-laden amyloid aggregates and correlates with Aβ burden. Abnormal exchange of cortical zinc may link amyloid pathology with neuronal iron accumulation in AD.
The Menkes protein (MNK; ATP7A) functions as a transmembrane copper-translocating P-type ATPase and plays a vital role in systemic copper absorption in the gut and copper reabsorption in the kidney. Polarized epithelial cells such as Madin-Darby canine kidney (MDCK) cells are a physiologically relevant model for systemic copper absorption and reabsorption in vivo. In this study, cultured MDCK cells were used to characterize MNK trafficking and enabled the identification of signaling motifs required to target the protein to specific membranes. Using confocal laser scanning microscopy and surface biotinylation we demonstrate that MNK relocalizes from the Golgi to the basolateral (BL) membrane under elevated copper conditions. As previously shown in nonpolarized cells, the metal binding sites in the NH2-terminal domain of MNK were found to be required for copper-regulated trafficking from the Golgi to the plasma membrane. These data provide molecular evidence that is consistent with the presumed role of this protein in systemic copper absorption in the gut and reabsorption in the kidney. Using site-directed mutagenesis, we identified a dileucine motif proximal to the COOH terminus of MNK that was critical for correctly targeting the protein to the BL membrane and a putative PDZ target motif that was required for localization at the BL membrane in elevated copper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.