The rational use of daylight can significantly reduce the cost of electricity for artificial lighting. This research aims at investigating the parameters of translucent structures of building envelope, and the value of daylight factor, for which maximum efficiency of daylight usage is achieved in office rooms. The study analyzes the dependence duration of daylight autonomy in office rooms, on the value of daylight factor for four European cities. The specific daylight autonomy (h/(year•m 2)) of office rooms were found. It was proved, that regardless the size of the rooms, the maximum specific daylight autonomy in Ternopil city (at illumination of 300 lx, which is prescribed by regulations), with lateral daylight, occurs when the daylight factor is in the range of 1.7% to 1.9%. Maxima-at 1.8%. At illumination of 500 lx, the maximum specific daylight autonomy will occur at a daylight factor range of 2.6% to 3.0%. Maxima-at 2.8%.
In the last few decades, photocatalysis has been found to be a practical, environmentally friendly approach for degrading various pollutants into non-toxic products (e.g., H2O and CO2) and generating fuels from water using solar light. Mainly, traditional photocatalysts (such as metal oxides, sulfides, and nitrides) have shown a promising role in various photocatalysis reactions. However, it faces many bottlenecks, such as a wider band gap, low light absorption nature, photo-corrosion issues, and quick recombination rates. Due to these, a big question arises of whether these traditional photocatalysts can meet increasing energy demand and degrade emerging pollutants in the future. Currently, researchers view heteroanionic materials as a feasible alternative to conventional photocatalysts for future energy generation and water purification techniques due to their superior light absorption capacity, narrower band gap, and improved photo-corrosion resistance. Therefore, this article summarizes the recent developments in heteroanionic materials, their classifications based on anionic presence, their synthesis techniques, and their role in photocatalysis. In the end, we present a few recommendations for improving the photocatalytic performance of future heteroanionic materials.
Nanostructured materials have gained much attention in recent engineering and material- science research due to their unique structural makeup, which stands them out from their bulk counterparts. Their novel properties of tiny-size structural elements (molecules or crystallites, clusters) of nanoscale dimensions (1 to 100 nm) make them a perfect material for energy applications. The recent keen interest in nanostructured materials research by academia and industrial experts arises from the unique variable characteristics of increased electrical and thermal conductivity. This occurs as nanostructured materials undergo a transient process from infinite-extended solid to a particle of ascertainable numbers of atoms. The commercial and energy sectors are very interested in developing and expanding simple synthetic pathways for nanostructured-electrocatalysts materials to aid in optimizing the number of active regions. Over the decades, various techniques have been put forward to design and synthesize nanostructured-electrocatalysts materials for electrochemical generation of energy and storage applications. As a result, the design of fuel cells, supercapacitors, and energy-storage devices has advanced significantly. This review provides a comprehensive outlook of various synthesis techniques and highlight the challenges of nanostructured- electrocatalysts materials application in fuel cells. Several synthesis methods are discussed and summarized for enhanced nanomaterial preparation and high product attainment with the sol-gel synthesis method being emphasized. The design methodology for an effective nanostructured electrocatalysts with high efficiency for fuel cells was also discussed.
Protonic ceramic fuel cells (PCFCs) are one of the promising and emerging technologies for future energy generation. PCFCs are operated at intermediate temperatures (450–750 °C) and exhibit many advantages over traditional high-temperature oxygen-ion conducting solid oxide fuel cells (O-SOFCs) because they are simplified, have a longer life, and have faster startup times. A clear understanding/analysis of their specific working parameters/processes is required to enhance the performance of PCFCs further. Many physical processes, such as heat transfer, species transport, fluid flow, and electrochemical reactions, are involved in the operation of the PCFCs. These parameters are linked with each other along with internal velocity, temperature, and electric field. In real life, a complex non-linear relationship between these process parameters and their respective output cannot be validated only using an experimental setup. Hence, the computational fluid dynamics (CFD) method is an easier and more effective mathematical-based approach, which can easily change various geometric/process parameters of PCFCs and analyze their influence on its efficiency. This short review details the recent studies related to the application of CFD modeling in the PCFC system done by researchers to improve the electrochemical characteristics of the PCFC system. One of the crucial observations from this review is that the application of CFD modeling in PCFC design optimization is still much less than the traditional O-SOFC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.