The fire disaster caused by gas leak LPG (Liquid Petroleum Gas) has increased every year from 2011 to 2015 of which 17% is caused by gas leakage. The use of LPG gas leak detector using arduino equipped with gas and temperature sensors makes it easy for early detection of leaks and fires. The design of LPG gas leak detector using fuzzy logic mandani algorithm, equipped with information via Short Message Service (SMS) and Buzzer. LPG gas leak detector can indication of leakage at an average gas concentration of 456 ppm from 10 tests and red fire indication 23.30 can recognize the occurrence of fire, the detector sends SMS to homeowners and firefighters. Keywords: Fuzzy Logic, Mandani, Arduino, LPG AbstrakBencana kebakaran yang diakibatkan oleh kebocoran gas LPG (Liquid Petroleum Gas) mengalami kenaikan setiap tahun dari tahun 2011 sampai 2015 diantaranya 17% diakibatkan oleh kebocoran gas. Penggunaan detektor kebocoran gas LPG menggunakan arduino yang dilengkapi sensor gas dan suhu memberikan kemudahan untuk deteksi secara awal terjadinya kebocoran dan kebakaran. Perancangan detektor kebocoran gas LPG menggunakan algoritma fuzzy logic mandani, dilengkapi dengan informasi melalui Short Message Service (SMS) dan Buzzer. Detektor kebocoran gas LPG dapat melakukan indikasi terjadinya bocor pada konsentrasi gas rata-rata 456 ppm dari 10 pengujian dan indikasi api merah 23,30 dapat mengenal terjadinya kebakaran, detektor mengirimkan SMS kepada pemilik rumah dan pemadam kebakaran.
Preprocessing is an essential part to achieve good segmentation since it affects the feature extraction process. Melanoma have various shapes and their extracted features from image are used for early stage detection. Due to the fact that melanoma is one of dangerous diseases, early detection is required to prevent further phase of cancer from developing. In this paper, we propose a new framework to detect cancer on skin images using color feature extraction and feature selection. The default color space of skin images is RGB, then brightness is added to distinguish the normal and darken area on the skin. After that, average filter and histogram equalization are applied as well for attaining a good color intensities which are capable of determining normal skin from suspicious one. Otsu thresholding is utilized afterwards for melanoma segmentation. There are 147 features extracted from segmented images. Those features are reduced using three types of feature selection algorithms: Linear Discriminant Analysis (LDA), Correlation based Feature Selection (CFS), and Relief. All selected features are classified using k-Nearest Neighbor (k-NN). Relief is known to be the best feature selection method among others and the optimal k value is 7 with 10-cross validation with accuracy of 0.835 and 0.845, without and with feature selection respectively. The result indicates that the frameworks is applicable for early skin cancer detection.
The palm is one of the biometric characteristics that has been relatively recently investigated for identification and verification systems. The reason for using the palm geometry feature is, because the palm geometry is considered more resistant to external factors, such as weather, dry or wet palm conditions compared to using the characteristics of the palm lines that have difficult details and are susceptible to external factors. The problem that often arises in the self-recognition system is that it is easy to commit a crime against a person's identity if only by using something that is owned or something that is known to a system, using biometrics techniques is expected to minimize these frequent problems. Therefore, this study was made to implement the region of interest (ROI) segmentation method for palm line imagery using sobel edge detection, so that it can help for the initial process of identification and verification. the highest accuracy value on the right palm line image reached 87.01% and the lowest reached 86.46%, the highest accuracy value on the left palm line image reached 85.35% and the lowest reached 82.68%.
Segmentasi citra merupakan suatu metode penting dalam pengolahan citra digital yang bertujuan membagi citra menjadi beberapa region yang homogen berdasarkan kriteria kemiripan tertentu. Salah satu syarat utama yang harus dimiliki suatu metode segmentasi citra yaitu menghasilkan citra boundary yang optimal.Untuk memenuhi syarat tersebut suatu metode segmentasi membutuhkan suatu klasifikasi piksel citra yang dapat memisahkan piksel secara linier dan non-linear. Pada penelitian ini, penulis mengusulkan metode segmentasi citra menggunakan SVM dan entropi Arimoto berbasis ERSS sehingga tahan terhadap derau dan mempunyai kompleksitas yang rendah untuk menghasilkan citra boundary yang optimal. Pertama, ekstraksi ciri warna dengan local homogeneity dan ciri tekstur dengan menggunakan Gray Level Co-occurrence Matrix (GLCM) yang menghasilkan beberapa fitur. Kedua, pelabelan dengan Arimoto berbasis ERSS yang digunakan sebagai kelas dalam klasifikasi. Ketiga, hasil ekstraksi fitur dan training kemudian diklasifikasi berdasarkan label dengan SVM yang telah di-training. Dari percobaan yang dilakukan menunjukkan hasil segmentasi kurang optimal dengan akurasi 69 %. Reduksi fitur perlu dilakukan untuk menghasilkan citra yang tersegmentasi dengan baik. Kata kunci: segmentasi citra, support vector machine, ERSS Arimoto Entropy, ekstraksi ciri.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.