Some pathogens and pests deliver small RNAs (sRNAs) into host cells to suppress host immunity. Conversely, hosts also transfer sRNAs into pathogens and pests to inhibit their virulence. Although sRNA trafficking has been observed in a wide variety of interactions, how sRNAs are transferred, especially from hosts to pathogens and pests, is still unknown. Here, we show that host cells secrete exosome-like extracellular vesicles to deliver sRNAs into fungal pathogen These sRNA-containing vesicles accumulate at the infection sites and are taken up by the fungal cells. Transferred host sRNAs induce silencing of fungal genes critical for pathogenicity. Thus, has adapted exosome-mediated cross-kingdom RNA interference as part of its immune responses during the evolutionary arms race with the pathogen.
Plants utilize extracellular vesicles (EVs) to transport small RNAs (sRNAs) into their fungal pathogens and silence fungal virulence-related genes through a phenomenon called “cross-kingdom RNAi.” It remains unknown, however, how sRNAs are selectively loaded into EVs. Here, we identified several RNA-binding proteins (RBPs) in Arabidopsis , including Argonaute 1 (AGO1), RNA helicases (RHs) and Annexins (ANN), which are secreted by exosome-like EVs. AGO1, RH11 and RH37 selectively bind to EV-enriched sRNAs but not non-EV enriched sRNAs, suggesting that they contribute to the selective loading of sRNAs into EVs. Conversely, ANN1 and ANN2 bind to sRNAs non-specifically. The ago1, rh11rh37 and ann1ann2 mutants showed reduced secretion of sRNAs in EVs, demonstrating that these RBPs play an important role in sRNA loading and/or stabilization in EVs. Furthermore, rh11rh37 and ann1ann2 showed increased susceptibility to Botrytis cinerea , supporting that RH11, RH37, ANN1 and ANN2 positively regulate plant immunity against B. cinerea .
Summary Recent discoveries show that fungi can take up environmental RNA, which can then silence fungal genes through environmental RNA interference. This discovery prompted the development of Spray‐Induced Gene Silencing (SIGS) for plant disease management. In this study, we aimed to determine the efficacy of SIGS across a variety of eukaryotic microbes. We first examined the efficiency of RNA uptake in multiple pathogenic and non‐pathogenic fungi, and an oomycete pathogen. We observed efficient double‐stranded RNA (dsRNA) uptake in the fungal plant pathogens Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Aspergillus niger and Verticillium dahliae, but no uptake in Colletotrichum gloeosporioides, and weak uptake in a beneficial fungus, Trichoderma virens. For the oomycete plant pathogen, Phytophthora infestans, RNA uptake was limited and varied across different cell types and developmental stages. Topical application of dsRNA targeting virulence‐related genes in pathogens with high RNA uptake efficiency significantly inhibited plant disease symptoms, whereas the application of dsRNA in pathogens with low RNA uptake efficiency did not suppress infection. Our results have revealed that dsRNA uptake efficiencies vary across eukaryotic microbe species and cell types. The success of SIGS for plant disease management can largely be determined by the pathogen’s RNA uptake efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.