In the last century, large watersheds in Southern Europe have been impacted by a combination of anthropogenic and climatic pressures, which have rapidly evolved to change the ecological status of freshwater and coastal systems. A comparative analysis was performed for Ebro, Rhône, Po and Danube rivers, to investigate if they exhibited differential dynamics in hydrology and water quality that can be linked to specific human and natural forces acting at sub-continental scales. Flow regime series were analyzed from daily to multi-decadal scales, considering frequency distributions, trends (Mann–Kendall and Sen tests) and discontinuities (SRSD Method). River loads of suspended matter, nutrients and organic matter and the eutrophication potential of river nutrients were estimated to assess the impact of river loads on adjacent coastal areas. The decline of freshwater resources largely impacted the Ebro watershed on annual (−0.139 km3 yr−1) and seasonal (−0.4% yr−1) scales. In the other rivers, only spring–summer showed significant decreases of the runoff coupled to an exacerbated flow variability (0.1–0.3% yr−1), which suggested the presence of an enhanced regional climatic instability. Discontinuities in annual runoff series (every 20–30 years) indicated a similar long-term evolution of Rhône and Po rivers, differently from Ebro and Danube. Higher nutrient concentrations in the Ebro and Po (+50%) compared to Rhône and Danube and distinct stoichiometric nutrient ratios may exert specific impacts on the growth of plankton biomass in coastal areas. The overall decline of inorganic phosphorus in the Rhône and Po (since the 1980s) and the Ebro and Danube (since the 1990s) mitigated the eutrophication in coastal ecosystems inducing, however, a phase in which the role of organic phosphorus loads (Po > Danube > Rhône > Ebro) on coastal productivity could be more relevant. Overall, the study showed that the largest South European watersheds are differently impacted by anthropogenic and climatic forces and that this will influence their vulnerability to future changes of flow regime and water quality.
PERSEUS project aims to identify the most relevant pressures exerted on the ecosystems of the Southern European Seas (SES), highlighting knowledge and data gaps that endanger the achievement of SES Good Environmental Status (GES) as mandated by the Marine Strategy Framework Directive (MSFD). A complementary approach has been adopted, by a meta-analysis of existing literature on pressure/impact/knowledge gaps summarized in tables related to the MSFD descriptors, discriminating open waters from coastal areas. A comparative assessment of the Initial Assessments (IAs) for five SES countries has been also independently performed. The comparison between meta-analysis results and IAs shows similarities for coastal areas only. Major knowledge gaps have been detected for the biodiversity, marine food web, marine litter and underwater noise descriptors. The meta-analysis also allowed the identification of additional research themes targeting research topics that are requested to the achievement of GES.
The Danube Delta, the second-largest wetland in Europe, provides people with multiple ecosystem services, consisting of drinking water, food, flood protection, nutrient recycling, and recreation, as it is a complex social–ecological system. Nowadays, the area faces heavy depopulation due to its failure in achieving an equilibrium between social, economic, and environmental issues. Therefore, its resurgence is the core element of its sustainable development strategy, and particular sectors such as fishing and aquaculture, agriculture, and tourism national strategies deal individually with essential issues without considering the potential conflicts that may arise from a particular sector’s development. This study develops a complex method for decision making concerning the sustainable development of the Danube Delta Biosphere Reserve based on the consultation of both local and higher-level stakeholders in decision making, and the identification of social, economic, and environmental key problems. After their validation by experts, we developed a system dynamics model and ran the identified scenarios together with the stakeholders and recommended policies for the sustainable development of the area. The scenario that combines the transition towards the moderate Intensification of aquaculture with ecological agriculture and slow tourism brings a reduced impact on water quality, but measures to reduce nutrients are still recommended.
By the late 20th century, a series of events or 'natural experiments', for example the depletion of apex predators, extreme eutrophication and blooms of invasive species, had suggested that the Black Sea could be considered as a large ecosystem 'laboratory'. The events resulted in regime shifts cascading through all trophic levels, disturbing ecosystem functioning and damaging the water environment. Causal pathways by which the external (hydroclimate, overfishing) and internal (food web interactions) drivers provoke regime shifts are investigated. Statistical data analyses supported by an interpretative framework based on hierarchical ecosystem theory revealed mechanisms of hierarchical incorporation of environmental factors into the ecosystem. Evidence links Atlantic teleconnections to Black Sea hydroclimate, which together with fishing shapes variability in fish stocks. The hydroclimatic signal is conveyed through the food web via changes in productivity at all levels, to planktivorous fish. Fluctuating fish abundance is believed to induce a lagged change in competitor jelly plankton that cascades down to phytoplankton and influences water quality. Deprived of the stabilising role of apex predators, the Black Sea's hierarchical ecosystem organisation is susceptible to both environmental and anthropogenic stresses, and increased fishing makes fish stock collapses highly probable. When declining stocks are confronted with burgeoning fishing effort associated with the inability of fishery managers and decision-makers to adapt rapidly to changes in fish abundance, there is overfishing and stock collapse. Management procedures are ineffective at handling complex phenomena such as ecosystem regime shifts because of the shortage of suitable explanatory models. The proposed concepts and models reported here relate the hydroclimate, overfishing and invasive species to shifts in ecosystem functioning and water quality, unravelling issues such as the causality of ecosystem interactions and mechanisms and offering potential for finding ways to reverse regime shifts. We advocate a management approach aiming at restoring ecosystem hierarchy that might mitigate the costly consequences of regime shifts.
Chlorophyll a (Chl a) dynamics in the near-shore waters of the NW Black Sea was investigated between 2002 and 2010 in the Mamaia Bay (north of Constanta, Romania) in relation to some physical-chemical parameters. Chl a ranged from values below detection limit (0.17 µg ) to 76.13 µg . l -1 , and showed large temporal variability (CV = 142.3%), strongly related to the Danube's discharges, meteorological conditions, and anthropogenic pressures.Seasonally, Chl a showed a winter/early spring maximum, sometimes followed by a stronger one in April/early May, closely linked to the Danube's higher discharges in spring. After significantly lower concentrations in late spring/early summer, Chl a exhibited its strongest maximum in summer (July-August), followed by another one in autumn (late September-October).Interannual variation of Chl a seems to be controlled by the hydrometeorological conditions in summer. Thus, the highest annual Chl a means were observed in 2006 (8.56 ± 8.35 µg . l -1 ) and 2010 (9.20 ± 11.72 µg . l -1 ), when, also, the summer Chl a concentrations were maximal due to the large riverine discharges. The lowest annual Chl a mean was observed in 2004 (4.57 ± 9.81 µg . l -1 ), closely linked to minimal summer Chl a resulted from a strong P limitation during summertime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.