Zinc is mostly extracted from zinc oxide and sulfide minerals, and this process involves flotation as a key step. While it is easier to float the sulfide mineral, its consumption and depletion has led to an increased reliance on zinc oxide minerals, including smithsonite; hence the development of efficient ways of collecting smithsonite by flotation is an important objective. Herein, we describe the use of 2-(hexadecanoylamino)acetic acid (HAA), a novel surfactant, as a collector during smithsonite flotation. The mechanism and flotation performance of HAA during smithsonite flotation were investigated by total organic carbon (TOC) content studies, zeta potential measurements, FTIR spectroscopy, and XPS analyses, combined with micro-flotation experiments. The flotation results revealed that HAA is an excellent collector in pulp over a wide pH range (9–12) and at a relatively low concentration (2 × 10‒4 mol/L), at which a recovery of close to 90% of the smithsonite mineral was obtained. TOC-content studies reveal that the good flotation recovery is ascribable to large amounts of collector molecule adsorbed on the smithsonite surface, while zeta potential measurements show that the HAA is chemically adsorbed onto the smithsonite. FTIR and XPS analyses reveal that the HAA-collector molecules adsorb onto the smithsonite surface as zinc-HAA complexes involving carboxylate moieties and Zn sites on the smithsonite surface in alkaline solution.
Zinc is mostly extracted from oxidized zinc and zinc sulfide minerals, and this process involves flotation as a key step. While it is easier to float the sulfide mineral, its consumption and depletion has led to an increased reliance on oxidized zinc minerals, including smithsonite. Hence, the development of efficient ways of collecting smithsonite by flotation is an important objective. Herein, we describe the use of 2-(hexadecanoylamino)acetic acid (HAA), a novel surfactant, as a collector during smithsonite flotation. The mechanism and flotation performance of HAA during smithsonite flotation was investigated by total organic carbon (TOC) content studies, zeta potential measurements, Fourier-transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses, combined with microflotation experiments. The flotation results revealed that HAA was an excellent collector in pulp over a wide pH range (9–12) and at a relatively low concentration (2 × 10−4 mol/L), at which a recovery of close to 90% of the smithsonite mineral was obtained. TOC content studies revealed that the good flotation recovery was ascribable to large amounts of collector molecule adsorbed on the smithsonite surface, while zeta potential measurements showed that the HAA was chemically adsorbed onto the smithsonite. FTIR and XPS analyses revealed that the HAA collector molecules adsorbed onto the smithsonite surface as zinc–HAA complexes involving carboxylate moieties and Zn sites on the smithsonite surface in alkaline solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.