We developed a new technique to immobilize a set of molecular beacons on an agarose film-coated slide and found that it has the ability to identify a single nucleotide difference in label-free DNA targets. The annealing properties, specificity and hybridization dynamics of the present technique were compared with those of the conventional technique that directly immobilizes molecular beacons on a planar glass slide. It is demonstrated that the molecular beacon array on an agarose film has high quench efficiency, an excellent discrimination ratio for single nucleotide mismatches and a short detection time. We hypothesize that such a low fluorescence background and high specificity molecular beacon array will find practical applications in label-free, high-throughput mutation analysis and disease diagnosis.
Nanopores have been used as a high throughput tool for characterizing individual biomolecules and nanoparticles. Here, we present the translocation of rigid rod-shaped tobacco mosaic virus (TMV) through solid-state nanopores. Interestingly, due to the high rigidity of TMV, three types of events with distinctive characteristics at the capture process and a strong current fluctuation during the translocation of TMV are observed. A kinetic model is then proposed to address the dynamics of the translocation, followed by corresponding dynamics simulations. The results reveal that TMV has to rotate to fit and pass the pore when it is captured by a nanopore with an angle larger than the maximum angle that allows it to pass through. Then, we investigate the dependence of the rotation of TMV on the conductance fluctuations at the blockade stage. The results show that the rotation of TMV during the passage through the pore affects the current signal significantly. This study gives a fundamental understanding of the dynamics of rod-shaped particles translocating through the nanopore and how the current responds to it. It opens a new possible way to characterize the rigidity of analytes by nanopores.
Nanopores have become an important tool for molecule detection at single molecular level. With the development of fabrication technology, synthesized solid-state membranes are promising candidate substrates in respect of their exceptional robustness and controllable size and shape. Here, a 30–60 (tip-base) nm conical nanopore fabricated in 100 nm thick silicon nitride (Si3N4) membrane by focused ion beam (FIB) has been employed for the analysis of λ-DNA translocations at different voltage biases from 200 to 450 mV. The distributions of translocation time and current blockage, as well as the events frequencies as a function of voltage are investigated. Similar to previously published work, the presence and configurations of λ-DNA molecules are characterized, also, we find that greater applied voltages markedly increase the events rate, and stretch the coiled λ-DNA molecules into linear form. However, compared to 6–30 nm ultrathin solid-state nanopores, a threshold voltage of 181 mV is found to be necessary to drive DNA molecules through the nanopore due to conical shape and length of the pore. The speed is slowed down ∼5 times, while the capture radius is ∼2 fold larger. The results show that the large nanopore in thick membrane with an improved stability and throughput also has the ability to detect the molecules at a single molecular level, as well as slows down the velocity of molecules passing through the pore. This work will provide more motivations for the development of nanopores as a Multi-functional sensor for a wide range of biopolymers and nano materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.